A criterion of smoothness at infinity for an arithmetic quotient of the future tube
- 作者: Shvartsman O.V.1,2, Vinberg E.B.3
-
隶属关系:
- Higher School of Economics
- Independent University of Moscow
- M. V. Lomonosov Moscow State University, Mechanics and Mathematics Faculty
- 期: 卷 51, 编号 1 (2017)
- 页面: 32-47
- 栏目: Article
- URL: https://journals.rcsi.science/0016-2663/article/view/234269
- DOI: https://doi.org/10.1007/s10688-017-0166-3
- ID: 234269
如何引用文章
详细
Let Γ be an arithmetic group of affine automorphisms of the n-dimensional future tube T. It is proved that the quotient space T/Γ is smooth at infinity if and only if the group Γ is generated by reflections and the fundamental polyhedral cone (“Weyl chamber”) of the group dΓ in the future cone is a simplicial cone (which is possible only for n ≤ 10). As a consequence of this result, a smoothness criterion for the Satake–Baily–Borel compactification of an arithmetic quotient of a symmetric domain of type IV is obtained.
作者简介
O. Shvartsman
Higher School of Economics; Independent University of Moscow
编辑信件的主要联系方式.
Email: ossipsh@gmail.com
俄罗斯联邦, Moscow; Moscow
E. Vinberg
M. V. Lomonosov Moscow State University, Mechanics and Mathematics Faculty
Email: ossipsh@gmail.com
俄罗斯联邦, Moscow
补充文件
