Structure of the nonisothermal swirling gas-droplet flow behind an abrupt tube expansion
- 作者: Pakhomov M.A.1, Terekhov V.I.1
-
隶属关系:
- Kutateladze Institute of Thermophysics, Siberian Branch
- 期: 卷 51, 编号 1 (2016)
- 页面: 70-80
- 栏目: Article
- URL: https://journals.rcsi.science/0015-4628/article/view/155057
- DOI: https://doi.org/10.1134/S0015462816010087
- ID: 155057
如何引用文章
详细
Flow structure and heat and mass transfer in a swirling two-phase stream is numerically modeled using the Reynolds stress transport model. The gas phase is described by the 3DRANS system of equations with account for the inverse influence of particles on the transport processes in the gas. The gas phase turbulence is calculated using the Reynolds stress transport model with account for the presence of disperse particles. The two-phase nonswirling flow behind an abrupt tube expansion contains a secondary corner vortex which is absent from the swirling flow. The disperse phase is redistributed over the tube cross-section. Large particles are concentrated in the wall region of the channel under the action of the centrifugal forces, while the smaller particles are in the central zone of the chamber.
作者简介
M. Pakhomov
Kutateladze Institute of Thermophysics, Siberian Branch
编辑信件的主要联系方式.
Email: pakhomov@ngs.ru
俄罗斯联邦, pr. Akademika Lavrent’eva 1, Novosibirsk, 630090
V. Terekhov
Kutateladze Institute of Thermophysics, Siberian Branch
Email: pakhomov@ngs.ru
俄罗斯联邦, pr. Akademika Lavrent’eva 1, Novosibirsk, 630090
补充文件
