


Vol 51, No 1 (2016)
- Year: 2016
- Articles: 15
- URL: https://journals.rcsi.science/0015-4628/issue/view/9373
Article
Wave attenuation in a vessel equipped with damper plates
Abstract
The effect of vertical damper plates mounted at the center of a rectangular vessel normal or at an angle to a wave flow is experimentally investigated for the first mode of the standing surface waves excited at the parametric resonance. The variation of the resonance curves and the wave attenuation degree are discussed. The fluid depth effect on the wave motion damping is evaluated.



Viscoelastic fluid flow in a prismatic channel of square cross-section with reference to the example of rubber mixtures
Abstract
Flow in a prismatic channel of the melts of the SKI-3 and SKMS30-ARKM-15-based rubber mixtures widely used in the chemical industry is numerically investigated. The description of these media, which exhibit viscoelstic properties when being processed, requires a particular approach that would take their rheological behavior and various anomalies into account. Amidst many rheological equations governing flows of rheologically complex media the equation that would ensure not only the good reliability of the results but also the feasibility in its practical use should be selected. The special features of viscoelastic fluids clearly manifest themselves in the flow in a prismatic channel of a noncircular cross-section. Secondary flows characteristic of the viscoelastic flows in such channels force the fluid particles to move in spiral trajectories along the channel. In the numerical calculations the Phan-Thien–Tanner (PTT) rheological model is used; its parameters are obtained on the basis of experimental data. The calculations are performed using the COSMOL Multiphysics software complex. the method of solution was tested against the analytical solution of the PTT fluid flow in a round tube which was compared with the numerical solution.



Structure of the interface between magnetic and conventional fluids: Model of immiscible phases
Abstract
The structure of the flat interface between a two-component magnetic suspension and a conventional nonmagnetizable fluid immiscible with it is investigated with account for the dependence of the free energy of the system on the magnetization gradients, the concentration of magnetic particles, and the bearing phase density. It is shown that at certain values of the problem parameters the volume concentration of magnetic particles strongly increases near the interface, that is, the particles are substantially adsorbed at this surface. The dependence of the surface tension tensor components on the magnetic field stress is determined.



Spreading of a liquid over a plane rigid substrate in an electric field
Abstract
The influence of an electric field on spreading of a thin conducting liquid layer over a plane rigid substrate is investigated theoretically. The conductivity of the liquid is assumed to be so low that the effect of the magnetic field of the currents generated in the liquid under the action of the electric field can be neglected. The spreading is assumed to be so slow that the quasi-steady approximation can be used to calculate the electric field strength which can be considered to be equal to zero inside the liquid. Equations that describe variations in the layer shape are obtained in the lubrication theory approximation. The general formulation of the problem is considered. The solution of the problem is obtained in parametric form when the effect of the gravity force and the surface tension can be neglected. Variations in the layer thickness along the substrate are so smooth that the charge distribution over its surface can be assumed to be the same as that over the substrate surface in the absence of the liquid.



Mathematical model of heat transfer in a fluid with account for its relaxation properties
Abstract
Using the terms that take account for the temporal and spatial nonlocality (time variation of the heat flux and the temperature gradient) in the formula of Fourier’s law for the heat flux a differential equation for a fluid in motion is derived that contains the second time derivative and themixed derivative with respect to the spatial and temporal variables. Numerical solution of the problem of heat transfer in the laminar fluid flow in a plane channel demonstrates that, in view of the lag in the time variation of the heat flux from zero to a certain maximum value, the boundary condition of the first kind (thermal shock) cannot be instantaneously realized. The process of its stabilization on the wall is characterized by a certain time interval, whose duration is determined by the relaxation properties of the fluid. At large values of the dimensionless coefficients of the heat flux relaxation and the temperature gradient the boundary condition of the first kind can be realized only as the steady state is attainted, as Fo→∞. In this case, the flow does not contain temperature jumps and negative temperature values.



Joint effect of heat and mass transfer on the compressible boundary layer stability
Abstract
The study continues the cycle of investigations concerned with the modeling of the methods of controlling flow regimes in compressible boundary layers. The effect of distributed heat and mass transfer on the stability parameters of a supersonic boundary layer is considered at amoderate supersonic Mach number M = 2. Emphasis is placed on the modeling of both the normal injection, when only the V component of the mean velocity is nonzero, and injection in other directions, including the tangential injection, when only the U component is nonzero on the wall. The formulation of the problem is similar with that of the gas curtain influence on the small fluctuation development. It is assumed that the effect of the injection of a similar gas with different temperatures is analogous to the injection of a gas with different densities, namely, the cold gas injection mimics the heavy gas injection, and vice versa. For this reason, in this study this modeling is realized by means of varying the temperature factor (wall heating or cooling). The case, in which the so-called “cutoff” regime is realized, that is, the velocity disturbances on a porous surface can be taken to be zero, is also considered.



On the hyperbolicity of one-dimensional models for transient two-phase flow in a pipeline
Abstract
Characteristic properties of one-dimensionalmodels of transient gas-liquid two-phase flows in long pipelines are investigated. The methods for studying the hyperbolicity of the systems of equations of multi-fluid and drift-fluxmodels are developed. On the basis of analytical and numerical studies, the limits of the hyperbolicity domains in the space of governing dimensionless parameters are found, and the impact of the closure relations on the characteristic properties of the models is analyzed. The methods of ensuring the global unconditional hyperbolicity are proposed. Explicit formulas for the eigenvelocities of the system of the drift-flux model equations are obtained and the conclusions about their sign-definiteness are drawn.



Structure of the nonisothermal swirling gas-droplet flow behind an abrupt tube expansion
Abstract
Flow structure and heat and mass transfer in a swirling two-phase stream is numerically modeled using the Reynolds stress transport model. The gas phase is described by the 3DRANS system of equations with account for the inverse influence of particles on the transport processes in the gas. The gas phase turbulence is calculated using the Reynolds stress transport model with account for the presence of disperse particles. The two-phase nonswirling flow behind an abrupt tube expansion contains a secondary corner vortex which is absent from the swirling flow. The disperse phase is redistributed over the tube cross-section. Large particles are concentrated in the wall region of the channel under the action of the centrifugal forces, while the smaller particles are in the central zone of the chamber.



Orientation instability of the layer of a nematic liquid crystal
Abstract
The origin of periodic structures in a layer of a lyotropic nematic liquid crystal observed in the director (vector, describing the anisotropic properties of the medium) reorientation experiment is studied. Such perturbations with the wavevector perpendicular to the initial orientation can develop in a liquid crystal layer in the unstable equilibrium state when the director is parallel to the walls under the condition that its orthogonality to the boundary corresponds to the minimum anchoring energy. It is shown that the linear dependence of the domain period on the layer thickness observed experimentally can be theoretically described when the Frank orientation elasticity energy is considered in the most general form taking the divergence terms into account and the anchoring energy of orientation is small as compared with the bulk energy. A relation between the coefficient of the divergence terms (saddlesplay elastic constant) and two other coefficients in the Frank energy is obtained.



Generation and stabilization of detonation in a plane elbowed channel
Abstract
The problem of detonation initiation in a supersonic flow of a stoichiometric propane-air mixture in a plane elbowed channel of constant width is considered. In the bend zone the channel walls are made in the shape of circles of given radii, whose lengths are determined by the given angle of the channel turn. An investigation is performed within the framework of the single-stage combustion kinetics using a numerical method based on the Godunov scheme and included in an original program complex, or a “virtual experimental setup”, developed for performing multiparameter calculations and flow visualization. The critical conditions of detonation generation are determined as functions of the oncoming flow velocity, the channel turn angle and width, and the radii of curvature of the walls.



Supersonic flow past a cylinder with a fluid flare
Abstract
The aerodynamic parameters and the pressure distribution over the surface of a cylinder in a steady axisymmetric supersonic flow is studied within the framework of the inviscid perfect gas model in the absence and the presence of combined intense air injection fromthe flat face and the lateral surface into the shock layer. The purpose of the study is to investigate the effect of gas blowing from different regions of the cylindrical surface on the supersonic axisymmetric flow past the body.



Formation of a secondary droplet over the crown upon the liquid film rupture under the action of a laser beam
Abstract
The free surface of a liquid film exposed to a laser beam is deformed and suffers a rupture. Depending on the thermal load intensity and the thermal properties of the liquid the rupture can be accompanied by the formation of secondary droplets over the film crown. This process is investigated using a mathematical model describing the motion of the thin layer of a viscous nonisothermal liquid. The model is based on the two-dimensional Navier–Stokes equations. The boundary conditions at the film-gas and film-liquid interfaces necessary for the solution of these equations are derived in the explicit form. The results of the solution of model problems are presented.



Accuracy of model kinetic equations
Abstract
The accuracy of model kinetic equations is analyzed using the exact moment solutions of the Boltzmann–Maxwell equation for homoenergetic affine flows of a monatomic gas of Maxwellian molecules in the absence of external forces. Solutions of the third-order kinetic-moment equations for homogeneous shear flow and one-dimensional homogeneous expansion-collapse flow are considered. The principal advantages of the domestic Shakhov and, especially, Larina–Rykov models are demonstrated.



Contouring two-sided asymmetric plane maximum-thrust nozzles
Abstract
The results of the optimal contouring of asymmetric plane nozzles under some additional constraints are presented. One of the constraints is due to the asymmetric arrangement of the unknown nozzles relative to the combustion chamber exit. The investigation is based on the numerical integration of the Reynolds-averaged Navier–Stokes equations and direct optimization methods using genetic algorithms and the representation of the optimized contours in the form of the Bernstein–Bézier curves.



Erratum
Erratum to: “Stokes flow over a cavity on a superhydrophobic surface containing a gas bubble”


