Коэкспрессия структурных и регуляторных генов флавоноидного пути выявляет особенности биосинтеза антоцианов в органах баклажана (Solanum melongena L.)

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Баклажан (Solanum melongena L.) является экономически значимой овощной культурой, фиолетово-окрашенные плоды которого обогащены антоцианидинами. В данной работе в геноме баклажана были идентифицированы гомологи основных известных структурных (CHS1, CHS2, CHI, F3H, F3´5´H, DFR, ANS и UFGT) и регуляторных (TT8, GL3, bHLH137, bHLH143, MYB1, MYB2 и MYB75) генов биосинтеза антоцианов, а также гена транспортера антоцианидинов (GSTF12). Охарактеризована экспрессия данных генов в сопоставлении с содержанием суммы антоцианов и окраской листа, лепестков цветка и кожицы плода. Показано, что профиль экспрессии генов соответствует окраске и присутствию антоцианов в ткани, а также указывает на существование органоспецифичных особенностей регуляции транскрипции генов, кодирующих транскрипционные факторы комплекса MBW. Результаты корреляционного анализа подтверждают участие генов SmbHLH137, SmTT8, SmMYB2 и SmMYB75 в регуляции экспрессии структурных генов в лепестках цветка, а SmGL3, SmTT8 и SmMYB1 – в кожице плода.

Об авторах

М. А. Филюшин

Федеральный исследовательский центр “Фундаментальные основы биотехнологии” Российской академии наук

Автор, ответственный за переписку.
Email: michel7753@mail.ru
Россия, Москва

А. В. Щенникова

Федеральный исследовательский центр “Фундаментальные основы биотехнологии” Российской академии наук

Email: michel7753@mail.ru
Россия, Москва

Е. З. Кочиева

Федеральный исследовательский центр “Фундаментальные основы биотехнологии” Российской академии наук

Email: michel7753@mail.ru
Россия, Москва

Список литературы

  1. Gürbüz N., Uluişikb S., Frarya A., Fraryc A., Doğanlara S. Health benefits and bioactive compounds of eggplant // Food Chem. 2018. V. 268. P. 602.
  2. Condurache N.N., Croitoru C., Enachi E., Bahrim G.E., Stanciuc N., Rapeanu G. Eggplant peels as a valuable source of anthocyanins: extraction, thermal stability and biological activities // Plants. 2021. V. 10: 577. https://doi.org/10.3390/Plants10030577
  3. Akhbari M., Hamedi S., Aghamiri Z.S. Optimization of total phenol and anthocyanin extraction from the peels of eggplant (Solanum melongena L.) and biological activity of the extracts // J. Food Measure. Character. 2019. V. 13. P. 3183.
  4. Yang G., Li L., Wei M., Li J., Yang F. SmMYB113 is a key transcription factor responsible for compositional variation of anthocyanin and color diversity among eggplant peels // Front. Plant Sci. 2022. V. 13: 843996. https://doi.org/10.3389/fpls.2022.843996
  5. Ma Y., Ma X., Gao X., Wu W., Zhou B. Light induced regulation pathway of anthocyanin biosynthesis in plants // Int. J. Mol. Sci. 2021. V. 22: 11116. https://doi.org/10.3390/ijms222011116
  6. Chaves-Silva S., dos Santos A.L., Chalfun A., Zhao J., Peres L.E.P., Benedito V.A. Understanding the genetic regulation of anthocyanin biosynthesis in plants ‒ tools for breeding purple varieties of fruits and vegetables // Phytochem. 2018. V. 153. P. 11. https://doi.org/10.1016/j.phytochem.2018.05.013
  7. Koes R., Verweij W., Quattrocchio F. Flavonoids: a colorful model for the regulation and evolution of biochemical pathways // Trends Plant Sci. 2005. V. 10. P. 236.
  8. Zhao J. Flavonoid transport mechanisms: how to go, and with whom // Trends Plant Sci. 2015. V. 20. P. 576. https://doi.org/10.1016/j.tplants.2015.06.007
  9. Pérez-Díaz R., Madrid-Espinoza J., Salinas-Cornejo J., González-Villanueva E., Ruiz-Lara S. Differential roles for VviGST1, VviGST3, and VviGST4 in proanthocyanidin and anthocyanin transport in Vitis vinifera // Front. Plant Sci. 2016. V. 7: 1166. https://doi.org/10.3389/fpls.2016.01166
  10. Niu M., Bao C., Chen J., Zhou W., Zhang Y., Zhang X., Su N., Cui J. RsGSTF12 contributes to anthocyanin sequestration in radish (Raphanus sativus L.) // Front. Plant Sci. 2022. V. 13: 870202. https://doi.org/10.3389/fpls.2022.870202
  11. Xue L., Huang X., Zhang Z., Lin Q., Zhong Q., Zhao Y., Gao Z., Xu C. An anthocyanin-related glutathione S‑transferase, MrGST1, plays an essential role in fruit coloration in chinese bayberry (Morella rubra) // Front. Plant Sci. 20222. V. 13: 903333. https://doi.org/10.3389/fpls.2022.903333
  12. Naing A.H., Kim C.K. Roles of R2R3-MYB transcription factors in transcriptional regulation of anthocyanin biosynthesis in horticultural plants // Plant Mol. Biol. 2018. V. 98. P. 1. https://doi.org/10.1007/s11103-018-0771-4
  13. Ramsay N.A., Glover B.J. MYB-bHLH-WD40 protein complex and the evolution of cellular diversity // Trends Plant Sci. 2005. V. 10. P. 63.
  14. Li J., Ren L., Gao Z., Jiang M., Liu Y., Zhou L., He Y., Chen H. Combined transcriptomic and proteomic analysis constructs a new model for light-induced anthocyanin biosynthesis in eggplant (Solanum melongena L.) // Plant Cell Environ. 2017. V. 40. P. 3069. https://doi.org/10.1111/pce.13074
  15. Wang Y., Liu S., Wang H., Zhang Y., Li W., Liu J., Cheng Q., Sun L., Shen H. Identification of the regulatory genes of UV-B-induced anthocyanin biosynthesis in pepper Fruit. // Int. J. Mol. Sci. 2022. V. 23: 1960. https://doi.org/10.3390/ijms23041960
  16. Zhang Y., Hu Z., Chu G., Huang C., Tian S., Zhao Z., Chen G. Anthocyanin accumulation and molecular analysis of anthocyanin biosynthesis-associated genes in eggplant (Solanum melongena L.) // J. Agric. Food Chem. 2014. V. 62. P. 2906. https://doi.org/10.1021/jf404574c
  17. Jiang M., Liu Y., Ren L., Lian H., Chen H. Molecular cloning and characterization of anthocyanin biosynthesis genes in eggplant (Solanum melongena L.) // Acta Physiol. Plant. 2016. V. 38: 163. https://doi.org/10.1007/s11738-016-2172-0
  18. Docimo T., Francese G., Ruggiero A., Batelli G., De Palma M., Bassolino L., Toppino L., Rotino G.L., Mennella G., Tucci M. Phenylpropanoids accumulation in eggplant fruit: characterization of biosynthetic genes and regulation by a MYB transcription factor // Front. Plant Sci. 2016. V. 6: 1233. https://doi.org/10.3389/fpls.2015.01233
  19. Liu X., Han H.Q., Ge H.Y., Jiang M.M., Chen H.Y. Cloning, expression and interaction of anthocyanin-related transcription factors SmTTG1, SmGL3 and SmTT8 in eggplant // Acta Horticult. Sin. 2014. V. 41. P. 2241.
  20. Jian W., Cao H., Yuan S., Liu Y., Lu J., Lu W., Li N., Wang J., Zou J., Tang N., Xu C., Cheng Y., Gao Y., Xi W., Bouzayen M., Li Z. SlMYB75, an MYB-type transcription factor, promotes anthocyanin accumulation and enhances volatile aroma production in tomato fruits // Hortic. Res. 2019. V. 6: 22. https://doi.org/10.1038/s41438-018-0098-y
  21. Solovchenko A.E., Chivkunova O.B., Merzlyak M.N., Reshetnikova I.V. A spectrophotometric analysis of pigments in apples // Russ. J. Plant Physiol. 2001. V. 48. P. 693.
  22. Hirakawa H., Shirasawa K., Miyatake K., Nunome T., Negoro S., Ohyama A., Yamaguchi H., Sato S., Isobe S., Tabata S., Fukuoka H. Draft genome sequence of eggplant (Solanum melongena L.): the representative solanum species indigenous to the old world // DNA Res. 2014. V. 21. P. 649. https://doi.org/10.1093/dnares/dsu027
  23. Бабак О.Г., Некрашевич Н.А., Никитинская Т.В., Яцевич К.К., Кильчевский А.В. Изучение полиморфизма генов MYB-факторов на основе сравнительной геномики овощных пасленовых культур (томат, перец, баклажан) для поиска ДНК-маркеров, дифференцирующих образцы по накоплению антоцианов // Доклады НАН Беларуси. 2019. Т. 63. С. 721.
  24. He Y., Li D., Li S., Liu Y., Chen H. SmBICs inhibit anthocyanin biosynthesis in eggplant (Solanum melongena L.) // Plant Cell Physiol. 2021. V. 62. P. 1001. https://doi.org/10.1093/pcp/pcab070
  25. Li L., Li S., Ge H., Shi S., Li D., Liu Y., Chen H. A light-responsive transcription factor SmMYB35 enhances anthocyanin biosynthesis in eggplant (Solanum melongena L.) // Planta. 2021. V. 255: 12. https://doi.org/10.1007/s00425-021-03698-x
  26. Li L., He Y., Ge H., Liu Y., Chen H. Functional characterization of SmMYB86, a negative regulator of anthocyanin biosynthesis in eggplant (Solanum melongena L.) // Plant Sci. 2021. V. 302: 110696. https://doi.org/10.1016/j.plantsci.2020.110696
  27. Wen J., Li Y., Qi T., Gao H., Liu B., Zhang M., Huang H., Song S. The C-terminal domains of Arabidopsis GL3/EGL3/TT8 interact with JAZ proteins and mediate dimeric interactions // Plant Signal Behav. 2018. V. 13: e1422460. https://doi.org/10.1080/15592324.2017
  28. Jensen E., Shafiei R., Ma X.F., Serba D.D., Smith D.P., Slavov G.T., Robson P., Farrar K., Jones S.T., Swaller T., Flavell R., Clifton-Brown J., Saha M.C., Donnison I. Linkage mapping evidence for a syntenic QTL associated with flowering time in perennial C4 rhizomatous grasses Miscanthus and switchgrass // Glob Change Bio-l. Bioenergy. 2021. V. 13. P. 98. https://doi.org/10.1111/gcbb.12755
  29. Skorupa M., Gołębiewski M., Kurnik K., Niedojadło J., Kęsy J., Klamkowski K., Wójcik K., Treder W., Tretyn A., Tyburski J. Salt stress vs. salt shock - the case of sugar beet and its halophytic ancestor // BMC Plant Biol. 2019. V. 19: 57. https://doi.org/10.1186/s12870-019-1661-x
  30. Maalouf F., Abou-Khater L., Babiker Z., Jighly A., Alsamman A.M., Hu J., Ma Y., Rispail N., Balech R., Hamweih A., Baum M., Kumar S. Genetic dissection of heat stress tolerance in faba bean (Vicia faba L.) using GWAS // Plants. 2022. V. 11: 1108. https://doi.org/10.3390/plants11091108

Дополнительные файлы


© М.А. Филюшин, А.В. Щенникова, Е.З. Кочиева, 2023

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах