Участие оксида азота в регуляции развития растений и их устойчивости к дефициту влаги

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Оксид азота – универсальная сигнальная молекула, вовлекаемая в модуляцию метаболической активности в ходе нормального роста и развития растений, и при формировании их устойчивости к стрессовым факторам окружающей среды. В обзоре представлены ключевые сведения, отражающие современное состояние проблемы регуляторной роли NO в растениях. Приведены краткие сведения о физико-химических свойствах NO, методах его исследования, путях биосинтеза и функциональной активности на разных этапах развития растений (прорастание, вегетативный рост, цветение, корнеобразование, симбиоз, минеральное питание). Кроме того, описано проявление защитных эффектов NO в условиях дефицита влаги, поскольку нарушение водного режима и обезвоживание растений наблюдается при воздействии разных абиотических стрессовых факторов, включая засуху, засоление, гипо- и гипертермию. Особое внимание уделено молекулярным механизмам NO-зависимого сигналинга, которые реализуются в растениях на геномном, протеомном и пост-протеомном уровнях в ходе множественных реакций нитрования. Понимание механизмов регуляторного действия NO в норме и при стрессе имеет важное теоретическое и прикладное значение в связи с необходимостью фундаментального обоснования возможности практического применения NO с целью повышения устойчивости и продуктивности культурных растений.

Об авторах

Ч. Р. Аллагулова

Институт биохимии и генетики – обособленное структурное подразделение
Уфимского федерального исследовательского центра Российской академии наук

Автор, ответственный за переписку.
Email: allagulova-chulpan@rambler.ru
Россия, Уфа

Р. А. Юлдашев

Институт биохимии и генетики – обособленное структурное подразделение
Уфимского федерального исследовательского центра Российской академии наук

Email: allagulova-chulpan@rambler.ru
Россия, Уфа

А. М. Авальбаев

Институт биохимии и генетики – обособленное структурное подразделение
Уфимского федерального исследовательского центра Российской академии наук

Email: allagulova-chulpan@rambler.ru
Россия, Уфа

Список литературы

  1. Klepper L. Nitric oxide (NO) and nitrogen dioxide (NO2) emissions from herbicide-treated soybean plants // Atmos. Environ. 1979. V. 13. P. 537. https://doi.org/10.1016/0004-6981(79)90148-3
  2. Koshland D.E., Jr. The molecule of the year // Science. 1992. V. 258. P. 1861. https://doi.org/10.1126/science.1470903
  3. Глянько А.К., Митанова Н.Б., Степанов А.В. Физиологическая роль оксида азота (NO) у растительных организмов // Журнал стресс-физиологии и биохимии. 2009. Т. 5. С. 33.
  4. Аллагулова Ч.Р., Авальбаев А.М., Лубянова А.Р., Ласточкина О.В., Шакирова Ф.М. Современные представления о механизмах образования оксида азота в растениях // Физиология растений. 2022. Т. 69. С. 339. https://doi.org/10.31857/S0015330322030034
  5. Красиленко Ю.А., Емец А.И., Блюм Я.Б. Функциональная роль оксидa азота у растений // Физиология растений. 2010. Т. 57. С. 483.
  6. Begara-Morales J.C., Chaki M., Valderrama R., Sánchez-Calvo B., Mata-Pérez C., Padilla M.N., Corpas F.J., Barroso J.B. Nitric oxide buffering and conditional nitric oxide release in stress response // J. Exp. Bot. 2018. V. 69. P. 3425. https://doi.org/10.1093/jxb/ery072
  7. Verma N., Tiwari S., Singh V.P., Prasad S.M. Nitric oxide in plants: an ancient molecule with new tasks // Plant Growth Regul. 2020. V. 90. P. 1. https://doi.org/10.1007/s10725-019-00543-w
  8. Kolbert Z., Barroso J.B., Brouquisse R., Corpas F.J., Gupta K.J., Lindermayr C., Loake G.J., Palma J.M., Petřivalský M., Wendehenne D., Hancock J.T. A forty year journey: The generation and roles of NO in plants // Nitric Oxide. 2019. V. 93. P. 53. https://doi.org/10.1016/j.niox.2019.09.006
  9. Hancock J.T., Neill S.J. Nitric Oxide: Its generation and interactions with other reactive signaling compounds // Plants. 2019. V. 8. P. 41. https://doi.org/10.3390/plants8020041
  10. León J., Costa-Broseta Á. Present knowledge and controversies, deficiencies, and misconceptions on nitric oxide synthesis, sensing, and signaling in plants // Plant Cell Environ. 2020. V. 43. P. 1. https://doi.org/10.1111/pce.13617
  11. Corpas F.J., Leterrier M., Valderrama R., Airaki M., Chaki M., Palma J.M., Barroso J.B. Nitric oxide imbalance provokes a nitrosative response in plants under abiotic stress // Plant Sci. 2011. V. 181. P. 604. https://doi.org/10.1016/j.plantsci.2011.04.005
  12. Gupta K.J., Hancock J.T., Petrivalsky M., Kolbert Z., Lindermayr C., Durner J., Barroso J.B., Palma J.M., Brouquisse R., Wendehenne D., Corpas F.J., Loake G.J. Recommendations on terminology and experimental best practice associated with plant nitric oxide research // New Phytol. 2020. V. 225. P. 1828. https://doi.org/10.1111/nph.16157
  13. Кудоярова Г.Р., Холодова В.П., Веселов Д.С. Современное состояние проблемы водного баланса растений при дефиците воды // Физиология растений. 2013. Т. 60. С. 155. https://doi.org/10.7868/S0015330313020140
  14. Santisree P., Bhatnagar-Mathur P., Sharma K.K. NO to drought-multifunctional role of nitric oxide in plant drought: do we have all the answers? // Plant Sci. 2015. V. 239. P. 44. https://doi.org/10.1016/j.plantsci.2015.07.012
  15. Santisree P., Sanivarapu H., Gundavarapu S., Sharma K.K., Bhatnagar-Mathur P. Nitric oxide as a signal in inducing secondary metabolites during plant stress // Co-Evolution of Secondary Metabolites. Reference Series in Phytochemistry / Eds. J.M. Merillon, K.G. Ramawat. Springer. 2019. P. 1. https://doi.org/10.1007/978-3-319-76887-8_61-1
  16. Lau S.E., Hamdan M.F., Pua T.L., Saidi N.B., Tan B.C. Plant nitric oxide signaling under drought stress // Plants. 2021. V. 10. P. 360. https://doi.org/10.3390/plants10020360
  17. Nabi R.B.S., Tayade R., Hussain A., Kulkarni K.P., Imran Q.M., Mun B.G., Yun B.W. Nitric oxide regulates plant responses to drought, salinity, and heavy metal stress // Environ. Exp. Bot. 2019. V. 161. P. 120. https://doi.org/10.1016/j.envexpbot.2019.02.003
  18. Sun C., Zhang Y., Liu L., Liu X., Li B., Jin C., Lin X. Molecular functions of nitric oxide and its potential applications in horticultural crops // Horticulture Res. 2021. V. 8. P. 71. https://doi.org/10.1038/s41438-021-00500-7
  19. Seabra A.B., Silveira N.M., Ribeiro R.V., Pieretti J.C., Barroso J.B., Corpas F.J., Palma J.M., Hancock J.T., Petřivalský M., Gupta K.J., Wendehenne D., Loake G.J., Durner J., Lindermayr C., Molnár Á. et al. Nitric oxide-releasing nanomaterials: from basic research to potential biotechnological applications in agriculture // New Phytol. 2022. V. 234. P. 1119. https://doi.org/10.1111/nph.18073
  20. Мамаева А.С., Фоменков А.А., Носов А.В., Мошков И.Е., Мур Л.А.Д., Холл М.А., Новикова Г.В. Регуляторная роль оксида азота у растений // Физиология растений. 2015. Т. 62. С. 459. https://doi.org/10.7868/S0015330315040132
  21. Hancock J.T. Nitric oxide signaling in plants // Plants. 2020. V. 9. P. 1550. https://doi.org/10.3390/plants9111550
  22. Gupta K.J., Fernie A.R., Kaiser W.M., van Dongen J.T. On the origins of nitric oxide // Trends Plant Sci. 2011. V. 16. P. 160. https://doi.org/10.1016/j.tplants.2010.11.007
  23. Jeandroz S., Wipf D., Stuehr D.J., Lamattina L., Melkonian M., Tian Z., Zhu Y., Carpenter E.J., Wong G.K., Wendehenne D. Occurrence, structure, and evolution of nitric oxide synthase-like proteins in the plant kingdom // Sci. Signaling. 2016. 9:re2. https://doi.org/10.1126/scisignal.aad4403
  24. Tejada-Jimenez M., Llamas A., Galván A., Fernández E. Role of nitrate reductase in NO production in photosynthetic eukaryotes // Plants. 2019. V. 8. P. 56. https://doi.org/10.3390/plants8030056
  25. Mohn M.A., Thaqi B., Fischer-Schrader K. Isoform-specific NO synthesis by Arabidopsis thaliana nitrate reductase // Plants. 2019. V. 8. P. 67. https://doi.org/10.3390/plants8030067
  26. Maia L.B., Moura J.J.G. Nitrite reduction by molybdoenzymes: a new class of nitric oxide-forming nitrite reductases // J. Biol. Inorg. Chem. 2015. V. 20. P. 403. https://doi.org/10.1007/s00775-014-1234-2
  27. Costa-Broseta Á., Castillo M.C., León J. Post-translational modifications of nitrate reductases autoregulates nitric oxide biosynthesis in Arabidopsis // Int. J. Mol. Sci. 2021. V. 22. P. 549. https://doi.org/10.3390/ijms22020549
  28. Chamizo-Ampudia A., Sanz-Luque E., Llamas Á., Ocaña-Calahorro F., Mariscal V., Carreras A., Barroso J.B., Galván A., Fernández E. A dual system formed by the ARC and NR molybdoenzymes mediates nitrite-dependent NO production in Chlamydomonas // Plant Cell Environ. 2016. V. 39. P. 2097. https://doi.org/10.1111/pce.12739
  29. Begara-Morales J.C., Chaki M., Valderrama R., Mata-Pérez C., Padilla-Serrano M.N., Barroso J.B. Nitric oxide under abiotic stress conditions // Plant Life Under Changing Environment / Eds. D.K. Tripathi et al. Elsevier. 2020. P. 735. https://doi.org/10.1016/B978-0-12-818204-8.00032-1
  30. Mata-Pérez C., Sánchez-Calvo B., Begara-Morales J.C., Carreras A., Padilla M.N., Melguizo M., Valderrama R., Corpas F.J., Barroso J.B. Nitro-linolenic acid is a nitric oxide donor // Nitric Oxide. 2016a. V. 57. P. 57. https://doi.org/10.1016/j.niox.2016.05.003
  31. Chamizo-Ampudia A., Sanz-Luque E., Llamas A., Galvan A., Fernandez E. Nitrate reductase regulates plant nitric oxide homeostasis // Trends Plant Sci. 2017. V. 22. P. 163. https://doi.org/10.1016/j.tplants.2016.12.001
  32. Foresi N., Correa-Aragunde N., Lamattina L. Synthesis, actions, and perspectives of nitric oxide in photosynthetic organisms // Nitric Oxide / Eds. L.J. Ignarro, B.A. Freeman. Elsevier. 2017. P. 125. https://doi.org/10.1016/B978-0-12-804273-1.00010-7
  33. Guo F.Q., Okamoto M., Crawford N.M. Identification of a plant nitric oxide synthase gene involved in hormonal signaling // Sci. 2003. V. 302. P. 100. https://doi.org/10.1126/science.108677
  34. Lozano-Juste J., León J. Enhanced abscisic acid-mediated responses in nia1nia2noa1-2 triple mutant impaired in NIA/NR-and AtNOA1-dependent nitric oxide biosynthesis in Arabidopsis // Plant Physiol. 2010. V. 152. P. 891. https://doi.org/10.1104/pp.109.148023
  35. Hu W.-J., Chen J., Liu T.-W., Liu X., Chen J., Wu F.-H., Wang W.-H., He J-X., Xiao Q., Zheng H.-L. Comparative proteomic analysis on wild type and nitric oxide-overproducing mutant (nox1) of Arabidopsis thaliana // Nitric Oxide. 2014. V. 36. P. 19. https://doi.org/10.1016/j.niox.2013.10.008
  36. Yun B.-W., Feechan A., Yin M., Saidi N.B.B., Le Bihan T., Yu M., Moore J.W., Kang J.-G., Kwon E., Spoel S.H., Pallas J.A., Loake G.J. S-nitrosylation of NADPH-oxidase regulates cell death in plant immunity // Nature. 2011. V. 478. P. 264. https://doi.org/10.1038/nature10427
  37. Wang P., Zhu J.K., Lang Z. Nitric oxide suppresses the inhibitory effect of abscisic acid on seed germination by S-nitrosylation of SnRK2 proteins // Plant Signal. Behav. 2015. V. 10. P. 2. https://doi.org/10.1080/15592324.2015.1031939
  38. Shi H., Ye T., Zhu J.K., Chan Z. Constitutive production of nitric oxide leads to enhanced drought stress resistance and extensive transcriptional reprogramming in Arabidopsis // J. Exp. Bot. 2014. V. 65. P. 4119. https://doi.org/10.1093/jxb/eru184
  39. Foresi N., Mayta M.L., Lodeyro A.F., Scuffi D., Correa-Aragunde N., García-Mata C., Casalongué C., Carrillo N., Lamattina L. Expression of the tetrahydrofolate-dependent nitric oxide synthase from the green alga Ostreococcus tauri increases tolerance to abiotic stresses and influences stomatal development in Arabidopsis // Plant J. 2015. V. 82. P. 806. https://doi.org/10.1111/tpj.12852
  40. Cai W., Liu W., Wang W.S., Fu Z.W., Han T.T., Lu Y.T. Overexpression of rat neurons nitric oxide synthase in rice enhances drought and salt tolerance // PloS One. 2015. 10(6):e0131599. https://doi.org/10.1371/journal.pone.0131599
  41. Mur L.A.J., Mandon J., Persijn S., Cristescu S.M., Moshkov I.E., Novikova G.V., Hall M.A., Harren F.J.M., Hebelstrup K., Gupta K.J. Nitric oxide in plants: an assessment of the current state of knowledge // AoB Plants. 2013. 5:pls052. https://doi.org/10.1093/aobpla/pls052
  42. Del Castello F., Nejamkin A., Cassia R., Correa-Aragunde N., Fernández B., Foresi N., Lombardo C., Ramirez L., Lamattina L. The era of nitric oxide in plant biology: Twenty years tying up loose ends // Nitric Oxide. 2019. V. 85. P. 17. https://doi.org/10.1016/j.niox.2019.01.013
  43. Bethke P.C., Badger M.R., Jones R.L. Apoplastic synthesis of nitric oxide by plant tissues // Plant Cell. 2004. V. 16. P. 332. https://doi.org/10.1105/tpc.017822
  44. Beligni M.V., Lamattina L. Nitric oxide stimulates seed germination and de-etiolation, and inhibits hypocotyl elongation, three light-inducible responses in plants // Planta. 2000. V. 210. P. 215. https://doi.org/10.1007/PL00008128
  45. Масленникова Д.Р., Аллагулова Ч.Р., Федорова К.А., Плотников А.А., Авальбаев А.М., Шакирова Ф.М. Вклад цитокининов в реализацию рост-стимулирующего и протекторного действия оксида азота на растения пшеницы // Физиология растений. 2017. Т. 64. С. 355. https://doi.org/10.7868/S0015330317040091
  46. Pandey S., Kumari A., Shree M., Kumar V., Singh P., Bharadwaj C., Loake G.J., Parida S.K., Masakapalli S.K., Gupta K.J. Nitric oxide accelerates germination via the regulation of respiration in chickpea // J. Exp. Bot. 2019. V. 70. P. 4539. https://doi.org/10.1093/jxb/erz185
  47. Zhang H., Shen W.B., Zhang W., Xu L.L. A rapid response of beta-amylase to nitric oxide but not gibberellin in wheat seeds during the early stage of germination // Planta. 2005. V. 220. P. 708. https://doi.org/10.1007/s00425-004-1390-7
  48. Leshem Y.Y., Haramaty E. The characterization and contrasting effects of the nitric oxide free radical in vegetative stress and senescence of Pisum sativum Linn. foliage // J. Plant Physiol. 1996. V. 148. P. 258. https://doi.org/10.1016/S0176-1617(96)80251-3
  49. Gouvea C.M.C.P., Souza J.F., Magalhaes A.C.N., Martins I.S. NO·–releasing substances that induce growth elongation in maize root segments // Plant Growth Regul. 1997. V. 21. P. 183.
  50. He Y., Tang R.H., Hao Y., Stevens R.D., Cook C.W., Ahn S.M., Jing L., Yang Z., Chen L., Guo F.Q., Fiorani F., Jackson R.B., Crawford N.M., Pei Z.M. Nitric oxide represses the Arabidopsis floral transition // Sci. 2004. V. 305. P. 1968. https://doi.org/10.1126/science.1098837
  51. Prado A.M., Porterfield D.M., Feijó J.A. Nitric oxide is involved in growth regulation and re-orientation of pollen tubes // Development. 2004. V. 131. P. 2707. https://doi.org/10.1242/dev.01153
  52. Pagnussat G.C., Lanteri M.L., Lombardo M.C., Lamattina L. Nitric oxide mediates the indole acetic acid induction activation of a mitogen-activated protein kinase cascade involved in adventitious root development // Plant Physiol. 2004. V. 135. P. 279. https://doi.org/10.1104/pp.103.038554
  53. Correa-Aragunde N., Graziano M., Lamattina L. Nitric oxide plays a central role in determining lateral root development in tomato // Planta. 2004. V. 218. P. 900. https://doi.org/10.1007/s00425-003-1172-7
  54. Correa-Aragunde N., Graziano M., Chevalier C., Lamattina L. Nitric oxide modulates the expression of cell cycle regulatory genes during lateral root formation in tomato // J. Exp. Bot. 2006. V. 57. P. 581. https://doi.org/10.1093/jxb/erj045
  55. Lombardo M.C., Graziano M., Polacco J.C., Lamattina L. Nitric oxide functions as a positive regulator of root hair development // Plant Signal. Behav. 2006. V. 1. P. 28. https://doi.org/10.4161/psb.1.1.2398
  56. Graziano M., Beligni M.V., Lamattina L. Nitric oxide improves internal iron availability in plants // Plant Physiol. 2002. V. 130. P. 1852. https://doi.org/10.1104/pp.009076
  57. Jin C.W., Du S.T., Shamsi I.H., Luo B.F., Lin X.Y. NO synthase-generated NO acts downstream of auxin in regulating Fe-deficiency-induced root branching that enhances Fe-deficiency tolerance in tomato plants // J. Exp. Bot. 2011. V. 62. P. 3875. https://doi.org/10.1093/jxb/err078
  58. García M.J., Suárez V., Romera F.J., Alcántara E., Pérez-Vicente R. A new model involving ethylene, nitric oxide and Fe to explain the regulation of Fe-acquisition genes in Strategy I plants // Plant Physiol. Biochem. 2011. V. 49. P. 537. https://doi.org/10.1016/j.plaphy.2011.01.019
  59. Ding F., Wang X.-F., Shi Q.-H., Wang M.-L., Yang F.-J., Gao Q.-H. Exogenous nitric oxide alleviated the inhibition of photosynthesis and antioxidant enzyme activities in iron-deficient Chinese cabbage (Brassica chinensis L.) // Agric. Sci. China. 2008. V. 7. P. 168. https://doi.org/10.1016/S1671-2927(08)60036-X
  60. Buet A., Moriconi J.I., Santa-María G.E., Simontacchi M. An exogenous source of nitric oxide modulates zinc nutritional status in wheat plants // Plant Physiol. Biochem. 2014. V. 83. P. 337. https://doi.org/10.1016/j.plaphy.2014.08.020
  61. Wang B.L., Tang X.Y., Cheng L.Y., Zhang A.Z., Zhang W.H., Zhang F.S., Liu J.Q., Cao Y., Allan D.L., Vance C.P., Shen J.B. Nitric oxide is involved in phosphorus deficiency-induced cluster-root development and citrate exudation in white lupin // New Phytol. 2010. V. 187. P. 1112. https://doi.org/10.1111/j.1469-8137.2010.03323.x
  62. Chen Z.H., Wang Y., Wang J.W., Babla M., Zhao C., García-Mata C., Sani E., Differ C., Mak M., Hills A., Amtmann A., Blatt M.R. Nitrate reductase mutation alters potassium nutrition as well as nitric oxide-mediated control of guard cell ion channels in Arabidopsis // New Phytol. 2016. V. 209. P. 1456. https://doi.org/10.1111/nph.13714
  63. Xia J., Kong D., Xue S., Tian W., Li N., Bao F., Hu Y., Du J., Wang Y., Pan X., Wang L., Zhang X., Niu G., Feng X., Li L., et al. Nitric oxide negatively regulates AKT1-mediated potassium uptake through modulating vitamin B6 homeostasis in Arabidopsis // Proc. Natl. Acad. Sci. USA. 2014. V. 111. P. 16196. https://doi.org/10.1073/pnas.141747311
  64. Gupta K.J., Kaladhar V.Ch., Fitzpatrick T.B., Fernie A.R., Møller I.M., Loake G.J. Nitric oxide regulation of plant metabolism // Mol. Plant. 2022. V. 15. P. 228. https://doi.org/10.1016/j.molp.2021.12.012
  65. Maskall C.S., Gibson J.F., Dart P.J. Electron-paramagnetic-resonance studies of leghaemoglobins from soya-bean and cowpea root nodules. Identification of nitrosyl-leghaemoglobin in crude leghaemoglobin preparations // Biochem. J. 1977. V. 167. P. 435. https://doi.org/10.1042/bj1670435
  66. Kanayama Y., Yamamoto Y. Formation of nitrosylleghemoglobin in nodules of nitrate-treated cowpea and pea plants // Plant Cell Physiol. 1991. V. 32. P. 19. https://doi.org/10.1093/oxfordjournals.pcp.a078048
  67. Mathieu C., Moreau S., Frendo P., Puppo A., Davies M.J. Direct detection of radicals in intact soybean nodules: presence of nitric oxide leghaemoglobin complexes // Free Rad. Biol. Med. 1998. V. 24. P. 1242. https://doi.org/10.1016/S0891-5849(97)00440-1
  68. Cueto M., Hernández-Perera O., Martín R., Bentura M.L., Rodrigo J., Lamas S., Golvano M.P. Presence of nitric oxide synthase activity in roots and nodules of Lupinus albus // FEBS Lett. 1996. V. 398. P. 159. https://doi.org/10.1016/S0014-5793(96)01232-X
  69. Horchani F., Prévot M.A., Boscari E., Evangelisti E., Meilhoc C., Bruand P., Raymond E., Boncompagni A.-S.S., Puppo A., Brouquisse R. Both plant and bacterial nitrate reductases contribute to nitric oxide production in Medicago truncatula nitrogen-fixing nodules // Plant Physiol. 2011. V. 155. P. 1023. https://doi.org/10.1104/pp.110.166140
  70. Murakami E., Nagata M., Shimoda Y., Kucho K., Higashi S., Abe M., Hashimoto M., Uchiumi T. Nitric oxide production induced in roots of Lotus japonicus by lipopolysaccharide from Mesorhizobium loti // Plant Cell Physiol. 2011. V. 52. P. 610. https://doi.org/10.1093/pcp/pcr020
  71. Sasakura F., Uchiumi T., Shimoda Y., Suzuki A., Takenouchi K., Higashi S., Abe M. A class 1 hemoglobin gene from Alnus firma functions in symbiotic and nonsymbiotic tissues to detoxify nitric oxide // Mol. Plant Microbe Interact. 2006. V. 19. P. 441. https://doi.org/10.1094/MPMI-19-0441
  72. Catalá M., Gasulla F., Pradas del Real A.E., García-Breijo F., Reig-Armiñana J., Barreno E. Fungal-associated NO is involved in the regulation of oxidative stress during rehydration in lichen symbiosis // BMC Microbiol. 2010. V. 10. P. 297. https://doi.org/10.1186/1471-2180-10-297
  73. Espinosa F., Garrido I., Ortega A., Casimiro I., Alvarez-Tinaut M.C. Redox activities and ROS, NO and phenylpropanoids production by axenically cultured intact olive seedling roots after interaction with a mycorrhizal or a pathogenic fungus // PLoS One. 2014. 9:e100132. https://doi.org/10.1371/journal.pone.0100132
  74. Kolbert Z., Bartha B., Erdei L. Generation of nitric oxide in roots of Pisum sativum, Triticum aestivum and Petroselinum crispum plants under osmotic and drought stress // Acta Biol. Szeged. 2005. V. 49. P. 13.
  75. Montilla-Bascón G., Rubiales D., Hebelstrup K.H., Mandon J., Harren F.J.M., Cristescu S.M., Mur L.A.J., Prats E. Reduced nitric oxide levels during drought stress promote drought tolerance in barley and is associated with elevated polyamine biosynthesis // Sci. Rep. 2017. V. 7. P. 13311. https://doi.org/10.1038/s41598-017-13458-1
  76. Planchet E., Verdu I., Delahaie J., Cukier C., Girard C., Morère-Le Paven M.C., Limami A.M. Abscisic acid-induced nitric oxide and proline accumulation in independent pathways under water-deficit stress during seedling establishment in Medicago truncatula // J. Exp. Bot. 2014. V. 65. P. 2161. https://doi.org/10.1093/jxb/eru088
  77. She X.P., Song X.G., He J.M. Role and relationship of nitric oxide and hydrogen peroxide in light/dark-regulated stomatal movement in Vicia faba // Acta Bot. Sin. 2004. V. 46. P. 1292.
  78. Zimmer-Prados L.M., Moreira A.S.F.P., Magalhaes J.R., Franca M.G.C. Nitric oxide increases tolerance responses to moderate water deficit in leaves of Phaseolus vulgaris and Vigna unguiculata bean species // Physiol. Mol. Biol. Plants. 2014. V. 20. P. 295. https://doi.org/10.1007/s12298-014-0239-1
  79. Patakas A.A., Zotos A., Beis A.S. Production, localisation and possible roles of nitric oxide in drought-stressed grapevines // Austr. J. Grape Wine Res. 2010. V. 16. P. 203. https://doi.org/10.1111/j.1755-0238.2009.00064.x
  80. García-Mata C., Lamattina L. Nitric oxide and abscisic acid cross talk in guard cells // Plant Physiol. 2002. V. 128. P. 790. https://doi.org/10.1104/pp.011020
  81. Neill S., Barros R., Bright J., Desikan R., Hancock J., Harrison J., Morris P., Ribeiro D., Wilson I. Nitric oxide, stomatal closure, and abiotic stress // J. Exp. Bot. 2008. V. 59. P. 165. https://doi.org/10.1093/jxb/erm293
  82. Sahay S., Torres E.D.L.C., Robledo-Arratia L., Gupta M. Photosynthetic activity and RAPD profile of polyethylene glycol treated B. juncea L. under nitric oxide and abscisic acid application // J. Biotech. 2020. V. 313. P. 29. https://doi.org/10.1016/j.jbiotec.2020.03.004
  83. Da Silva Leite R., do Nascimento M.N., Tanan T.T., Gonçalves Neto L.P., da Silva Ramos C.A., da Silva A.L. Alleviation of water deficit in Physalis angulata plants by nitric oxide exogenous donor // Agric. Water Manag. 2019. V. 216. P. 98. https://doi.org/10.1016/j.agwat.2019.02.001
  84. Silveira N.M., Frungillo L., Marcos F.C.C., Pelegrino M.T., Miranda M.T. Seabra A.B., Salgado I., Machado E.C., Ribeiro R.V. Exogenous nitric oxide improves sugarcane growth and photosynthesis under water deficit // Planta. 2016. V. 244. P. 181. https://doi.org/10.1007/s00425-016-2501-y
  85. Jasid S., Simontacchi M., Bartoli C.G., Puntarulo S. Chloroplasts as a nitric oxide cellular source. Effect of reactive nitrogen species on chloroplastic lipids and proteins // Plant Physiol. 2006. V. 142. P. 1246. https://doi.org/10.1104/pp.106.086918
  86. Wang Y., Suo B., Zhao T., Qu X., Yuan L., Zhao X., Zhao H. Effect of nitric oxide treatment on antioxidant responses and psbA gene expression in two wheat cultivars during grain filling stage underdrought stress and rewatering // Acta Physiol. Plant. 2011. V. 33. P. 1923.
  87. Колупаев Ю.Е., Кокорев А.И. Антиоксидантная система и устойчивость растений к недостатку влаги // Физиология растений и генетика. 2019. Т. 51. С. 28. https://doi.org/10.15407/frg2019.01.028
  88. Rezayian M., Ebrahimzadeh H., Niknam V. Nitric oxide stimulates antioxidant system and osmotic adjustment in soybean under drought stress // J. Soil Sci. Plant Nutr. 2020. V. 20. P. 1122. https://doi.org/10.1007/s42729-020-00198-x
  89. Farooq M., Basra M.A., Wahid A., Rehman H. Exogenously applied nitric oxide enhances the drought tolerance in fine grain aromatic rice (Oryza sativa L.) // J. Agro. Crop Sci. 2009. V. 195. P. 254. https://doi.org/10.1111/j.1439-037X.2009.00367.x
  90. Gan L., Wu X., Zhong Y. Exogenously applied nitric oxide enhances the drought tolerance in hulless barley // Plant Prod. Sci. 2015. V. 18. P. 52. https://doi.org/10.1626/pps.18.52
  91. Колупаев Ю.Е., Вайнер А.А., Ястреб Т.О. Пролин: физиологические функции и регуляция содержания в растениях в стрессовых условиях // Вісник Харківського національного аграрного університету. Сер.: Біологія. 2014. №. 2. С. 6.
  92. Zhang L., Ruan Z., Tian L., Lai J., Zheng P.E.N.G., Liang Z., Alva A.K. Foliar-applied urea modulates nitric oxide synthesis metabolism and glycinebetaine accumulation in drought-stressed maize // Pak. J. Bot. 2014. V. 46. P. 1159.
  93. Zhao Y., Wei X., Long Y., Ji X. Transcriptional analysis reveals sodium nitroprusside affects alfalfa in response to PEG-induced osmotic stress at germination stage // Protoplasma. 2020. V. 257. P. 1345. https://doi.org/10.1007/s00709-020-01508-x
  94. Ziogas V., Tanou G., Filippou P., Diamantidis G., Vasilakakis M., Fotopoulos V., Molassiotis A. Nitrosative responses in citrus plants exposed to six abiotic stress conditions // Plant Physiol. Biochem. 2013. V. 68. P. 118. https://doi.org/10.1016/j.plaphy.2013.04.004
  95. Сидоренко Е.С., Харитонашвили Е.В. Роль NO в регуляции растительного метаболизма // Всеросс. журн. науч. публ. 2011. №. 8. С. 18.
  96. Kusaba M., Tanaka A., Tanaka R. Stay-green plants: What do they tell us about the molecular mechanism of leaf senescence // Photosynth. Res. 2013. V. 117. P. 221. https://doi.org/10.1007/s11120-013-9862-x
  97. Correa-Aragunde N., Foresi N., Delledonne M., Lamattina L. Auxin induces redox regulation of ascorbate peroxidase 1 activity by S-nitrosylation/denitrosylation balance resulting in changes of root growth pattern in Arabidopsis // J. Exp. Bot. 2013. V. 64. P. 3339. https://doi.org/10.1093/jxb/ert172
  98. Mata-Pérez C., Sánchez-Calvo B., Padilla M.N., Begara-Morales J.C., Luque F., Melguizo M., Jiménez-Ruiz J., Fierro-Risco J., Peñas-Sanjuán A., Valderrama R., Corpas F.J., Barroso J.B. Nitro-fatty acids in plant signaling: nitro-linolenic acid induces the molecular chaperone network in Arabidopsis // Plant Physiol. 2016b. V. 170. P. 686. https://doi.org/10.1104/pp.15.01671
  99. Aranda-Caño L., Sánchez-Calvo B., Begara-Morales J.C., Chaki M., Mata-Pérez C., Padilla M.N., Valderrama R., Barroso J.B. Post-translational modification of proteins mediated by nitro-fatty acids in plants: nitroalkylation // Plants. 2019. V. 8. P. 82. https://doi.org/10.3390/plants8040082

© Ч.Р. Аллагулова, Р.А. Юлдашев, А.М. Авальбаев, 2023

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах