РЕАКЦИЯ ДЫХАНИЯ РАСТЕНИЙ ARABIDOPSIS THALIANA С ПОДАВЛЕНИЕМ NPQ1 НА ПОВЫШЕННУЮ ОСВЕЩЕННОСТЬ: НЕКОТОРЫЕ АСПЕКТЫ ФУНКЦИОНАЛЬНОГО ВЗАИМОДЕЙСТВИЯ ХЛОРОПЛАСТОВ И МИТОХОНДРИЙ
- Авторы: Гармаш Е.В1, Ядрихинский К.В1, Шелякин М.А1, Белых Е.С1, Силина Е.В1, Малышев Р.В1
-
Учреждения:
- Институт биологии Коми научного центра Уральского отделения Российской академии наук
- Выпуск: Том 72, № 2 (2025)
- Страницы: 81-99
- Раздел: ЭКСПЕРИМЕНТАЛЬНЫЕ СТАТЬИ
- URL: https://journals.rcsi.science/0015-3303/article/view/357568
- DOI: https://doi.org/10.7868/S3034624X25020011
- ID: 357568
Цитировать
Аннотация
Об авторах
Е. В Гармаш
Институт биологии Коми научного центра Уральского отделения Российской академии наук
Email: garmash@ib.komisc.ru
Сыктывкар, Российская Федерация
К. В Ядрихинский
Институт биологии Коми научного центра Уральского отделения Российской академии наукСыктывкар, Российская Федерация
М. А Шелякин
Институт биологии Коми научного центра Уральского отделения Российской академии наукСыктывкар, Российская Федерация
Е. С Белых
Институт биологии Коми научного центра Уральского отделения Российской академии наукСыктывкар, Российская Федерация
Е. В Силина
Институт биологии Коми научного центра Уральского отделения Российской академии наукСыктывкар, Российская Федерация
Р. В Малышев
Институт биологии Коми научного центра Уральского отделения Российской академии наукСыктывкар, Российская Федерация
Список литературы
- Demmig-Adams B. Carotenoids and photoprotection in plants: a role for the xanthophyll zeaxanthin // Biochim. Biophys. Acta — Bioenerg. 1990. V. 1020. P. 1–24. https://doi.org/10.1016/0005-2728(90)90088-L
- Niyogi K.K., Grossman A.R., Björkman O. Arabidopsis mutants define a central role for the xanthophyll cycle in the regulation of photosynthetic energy conversion // Plant Cell. 1998. V. 10. P. 1121–1134. https://doi.org/10.1105/tpc.10.7.1121
- Raghavendra A.S., Padmasree K. Beneficial interactions of mitochondrial metabolism with photosynthetic carbon assimilation // Trends Plant Sci. 2003. V. 8. P. 546–553. https://doi.org/10.1016/j.tplants.2003.09.015
- Noguchi K., Yoshida K. Interaction between photosynthesis and respiration in illuminated leaves // Mitochondrion. 2008. V. 8. P. 87–99. https://doi.org/10.1016/j.mito.2007.09.003
- Гармаш Е.В. Митохондриальное дыхание фотосинтезирующей клетки // Физиология растений. 2016. Т. 63. C. 17–30. https://doi.org/10.7868/S001533031506007X
- Vanlerberghe G.C., Dahal K., Alber N.A., Chadee A. Photosynthesis, respiration and growth: a carbon and energy balancing act for alternative oxidase // Mitochondrion. 2020. V. 52. P. 197–211. https://doi.org/10.1016/j.mito.2020.04.001
- Гармаш Е.В. Сигнальные пути регуляции экспрессии генов альтернативной оксидазы растений // Физиология растений. 2022. Т. 69. C. 3–19. https://doi.org/10.31857/S001533032010055
- Van Aken O. Mitochondrial redox systems as central hubs in plant metabolism and signalling // Plant Physiol. 2021. V. 186. P. 36–52. https://doi.org/10.1093/plphys/kiab101
- van Lis R., Atteia A. Control of mitochondrial function via photosynthetic redox signals // Photosynth. Res. 2004. V. 79. P. 133–148. https://doi.org/10.1023/B:PRES.0000015409.14871.68
- Юрина Н.П., Одинцов М.С. Ретроградная сигнальная система хлоропластов // Физиология растений. 2019. Т. 66. C. 243–255. https://doi.org/10.1134/S0015330319040146
- Garmash E.V., Dymova O.V., Malyshev R.V., Plyusnina S.N., Golovko T.K. Developmental changes in energy dissipation in etiolated wheat seedlings during the greening process // Photosynthetica. 2013. V. 51. P. 497–508. https://doi.org/10.1007/s11099-013-0044-z
- Vishwakarma A., Tetali S.D., Selinski J., Scheibe R., Padmasree K. Importance of the alternative oxidase (AOX) pathway in regulating cellular redox and ROS homeostasis to optimize photosynthesis during restriction of the cytochrome oxidase pathway in Arabidopsis thaliana // Ann Bot. 2015. V. 116. P. 555–569. https://doi.org/10.1093/aob/mcv122
- Garmash E.V., Dymova O.V., Silina E.V., Malyshev R.V., Belykh E.S., Shelyakin M.A., Velegzhaninov I.O. AOX1a Expression in Arabidopsis thaliana affects the state of chloroplast photoprotective systems under moderately high light conditions // Plants. 2022. V. 11. P. 3030. https://doi.org/10.3390/plants11223030
- Garmash E.V. Suppression of mitochondrial alternative oxidase can result in upregulation of the ROS scavenging network: some possible mechanisms underlying the compensation effect // Plant Biol. 2022. V. 25. P. 43–53. https://doi.org/10.1111/plb.13477
- Boyes D.C., Zayed A.M., Ascenzi R., McCaskill A.J., Hoffman N.E., Davis K.R., Görlach J. Growth stage-based phenotypic analysis of Arabidopsis: a model for high throughput functional genomics in plants // Plant Cell. 2001. V. 13. P. 1499–1510. https://doi.org/10.2307/3871382
- Czechowski T., Stitt M., Altmann T., Udvardi M.K., Scheible W.-R. Genome-wide identification and testing of superior reference genes for transcript normalization in Arabidopsis // Plant Physiol. 2005. V. 139. P. 5–17. https://doi.org/10.1104/pp.105.063743
- Livak K.J., Schmittgen T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(–Delta Delta C(T)) method // Methods. 2001. V. 25. P. 402–408. https://doi.org/10.1006/meth.2001.1262
- Bradford M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding // Anal. Biochem. 1976. V. 72. P. 248–254. https://doi.org/10.1016/0003-2697(76)90527-3
- Chaitanya K.S.K., Naithani S.C. Role of superoxide, lipid peroxidation and superoxide dismutase in membrane perturbation during loss of viability in seeds of Shorea robusta Gaertn.f. // New Phytol. 1994. V. 126. P. 623–627. https://doi.org/10.1111/j.1469-8137.1994.tb02957.x
- Bellincampi D., Dipierro N., Salvi G., Cervone F., De Lorenzo G. Extracellular H2O2 induced by oligogalacturonides is not involved in the inhibition of the auxin-regulated rolB gene expression in tobacco leaf explants // Plant Physiol. 2000. V. 122. P. 1379–1386. https://doi.org/10.1104/pp.122.4.1379
- Libik M., Konieczny R., Surowka E., Miszalski Z. Superoxide dismutase activity in organs of Mesembryanthemum crystallinum L. at different stages of CAM development // Acta Biol. Cracov. Bot. 2005. V. 47. P. 199–204.
- Beauchamp C., Fridovich I. Superoxide dismutase: Improved assays and an assay applicable to acrylamide gels // Anal. Biochem. 1971. V. 44. P. 276–287. https://doi.org/10.1016/0003-2697(71)90370-8
- Giusti M.M., Wrolstad R.E. Characterization and measurement of anthocyanins by UV-visible spectroscopy // Curr. Protoc. Food Anal. Chem. 2001. V. 00. P. 1.2.1–1.2.13. https://doi.org/10.1002/0471142913.faf0102s00
- Külheim C., Jansson S. What leads to reduced fitness in non-photochemical quenching mutants? // Physiol. Plant. 2005. V. 125. P. 202–211. https://doi.org/10.1111/j.1399-3054.2005.00547.x
- Clifton R., Millar A.H., Whelan J. Alternative oxidases in Arabidopsis: a comparative analysis of differential expression in the gene family provides new insights into function of non-phosphorylating bypasses // Biochim. Biophys. Acta. 2006. V. 1757. P. 730–741. https://doi.org/10.1016/j.bbabio.2006.03.009
- Yoshida K., Noguchi K. Differential gene expression profiles of the mitochondrial respiratory components in illuminated Arabidopsis leaves // Plant Cell Physiol. 2009. V. 50. P. 1449–1462. https://doi.org/10.1093/pcp/pcp090
- Garmash E.V., Belykh E.S., Velegzhaninov I.O. The gene expression profiles of mitochondrial respiratory components in Arabidopsis plants with differing amounts of ALTERNATIVE OXIDASE1a under high intensity light // Plant Signal Behav. 2021. V. 16. https://doi.org/10.1080/15592324.2020.1864962
- Keunen E., Schellingen K., Van Der Straeten D., Remans T., Colpaert J., Vangronsveld J., Cuypers A. ALTERNATIVE OXIDASE1a modulates the oxidative challenge during moderate Cd exposure in Arabidopsis thaliana leaves // J. Exp. Bot. 2015. V. 66. P. 2967–2977. https://doi.org/10.1093/jxb/erv035
- Clifton R., Lister R., Parker K.L., Sappl P.G., Elhafez D., Millar A.H., Day D.A., Whelan J. Stress-induced co-expression of alternative respiratory chain components in Arabidopsis thaliana // Plant Mol. Biol. 2005. V. 58. P. 193–212. https://doi.org/10.1007/s11103-005-5514-7
- Wang H., Huang J., Liang X., Bi Y. Involvement of hydrogen peroxide, calcium, and ethylene in the induction of the alternative pathway in chilling-stressed Arabidopsis callus // Planta. 2012. V. 235. P. 53–67. https://doi.org/10.1007/s00425-011-1488-7
- Rasmusson A.G., Escobar M. Light and diurnal regulation of plant respiratory gene expression // Physiol. Plant. 2007. V. 129. P. 57–67. https://doi.org/10.1111/j.1399-3054.2006.00797.x
- Florez-Sarasa I., Ostaszewska M., Galle A., Flexas J., Rychter A.M., Ribas-Carbó M. Changes of alternative oxidase activity, capacity and protein content in leaves of Cucumis sativus wild type and MSC16 mutant grown under different light intensities // Physiol. Plant. 2009. V. 137. P. 419–426. https://doi.org/10.1111/j.1399-3054.2009.01244.x
- Garmash E.V., Grabelhych O.I., Velegzhaninov I.O., Borovik O.A., Dalke I.V., Voinikov V.K., Golovko T.K. Light regulation of alternative oxidase pathway during greening of etiolated wheat seedlings // J. Plant Physiol. 2015. V. 174. P. 75–84. https://doi.org/10.1016/j.jplph.2014.09.016
- Zalutskaya Z., Lapina T., Ermilova E. The Chlamydomonas reinhardtii alternative oxidase 1 is regulated by heat stress // Plant Physiol. Biochem. 2015. V. 97. P. 229–234. https://doi.org/10.1016/j.plaphy.2015.10.014
- El-Brolosy M.A., Stainier D.Y.R. Genetic compensation: a phenomenon in search of mechanisms // PLoS Genet 2017. V. 13. P. e1006780. https://doi.org/10.1371/journal.pgen.1006780
- Selinski J., Hartmann A., Deckers-Hebestreit G., Day D.A., Whelan J., Scheibe R. Alternative oxidase isoforms are differentially activated by tricarboxylic acid cycle intermediates // Plant Physiol. 2018. V. 176. P. 1423–1432. https://doi.org/10.1104/pp.17.01331
- Ambawat S., Sharma P., Yadav N.R., Yadav R.C. MYB transcription factor genes as regulators for plant responses: an overview // Physiol. Mol. Biol. Plants. 2013. V. 19. P. 307–321. https://doi.org/10.1007/s12298-013-0179-1
- Zhang X., Ivanova A., Vandepoele K., Radomiljac J., Van de Velde J., Berkowitz O., Willems P., Xu Y., Ng S., Van Aken O., Duncan O., Zhang B., Storme V., Chan K.X., Vaneechoutte D. et al. The transcription factor MYB29 is a regulator of ALTERNATIVE OXIDASE1a // Plant Physiol. 2017. V. 173. P. 1824–1843. https://doi.org/10.1104/pp.16.01494
- Jin H. Transcriptional repression by AtMYB4 controls production of UV-protecting sunscreens in Arabidopsis // EMBO J. 2000. V. 19. P. 6150–6161. https://doi.org/10.1093/emboj/19.22.6150
- Shams M., Pokora W., Khadivi A., Aksmann A. Superoxide dismutase in Arabidopsis and Chlamydomonas: diversity, localization, regulation, and role // Plant Soil. 2024. V. 53. P. 751–771. https://doi.org/10.1007/s11104-024-06618-6
Дополнительные файлы


