The Role of Catabolic Programs in Plant Adaptation to the Toxic Effects of Acute Chloride Salinity
- Authors: Murtuzova A.V1, Strizhenok A.D1, Kuznetsov V.V1, Tyutereva E.V1
-
Affiliations:
- Komarov Botanical Institute RAS
- Issue: Vol 72, No 3 (2025)
- Pages: 159–180
- Section: ОБЗОРЫ
- URL: https://journals.rcsi.science/0015-3303/article/view/376544
- DOI: https://doi.org/10.7868/S3034624X25030015
- ID: 376544
Cite item
Abstract
About the authors
A. V Murtuzova
Komarov Botanical Institute RAS
Email: amurtuzova@binran.ru
ORCID iD: 0000-0002-2047-2617
PhD in Biology, Researcher St. Petersburg, Russian Federation
A. D Strizhenok
Komarov Botanical Institute RAS
Email: strileha03@mail.ru
Bachelor of Science in Biology St. Petersburg, Russian Federation
V. V Kuznetsov
Komarov Botanical Institute RAS
Email: vkuznetsov@binran.ru
Senior Engineer St. Petersburg, Russian Federation
E. V Tyutereva
Komarov Botanical Institute RAS
Email: ETutereva@binran.ru
ORCID iD: 0000-0002-6727-6656
PhD in Biology, Leading Researcher St. Petersburg, Russian Federation
References
- Munns R., Tester M. Mechanisms of salinity tolerance // Annu. Rev. Plant Biol. 2008. V. 59. P. 651–681. https://doi.org/10.1146/annurev.arplant.59.032607.092911
- Guo R., Zhao L., Zhang K., et al. Comparative genomics and transcriptomics of the extreme halophyte Puccinellia tenuiflora provides insights into salinity tolerance differentiation between Halophytes and glycophytes // Front. Plant Sci. 2021. V. 12. P. 649001.
- Osman K.T. Saline and sodic soils. In: Management of Soil Problems. Springer, Cham. 2018. P. 255–298.
- Van Zelm E., Zhang Y., Testerink C. Salt tolerance mechanisms of plants // Annu. Rev. Plant Biol. 2020. V. 71. P. 403–433. https://doi: 10.1146/annurev-arplant-050718-100005
- Zhao S., Zhang Q., Liu M., et al. Regulation of plant responses to salt stress // Int. J. Mol. Sci. 2021. V. 22. P. 4609.
- Negrão S., Schmöckel S.M., Tester M. Evaluating physiological responses of plants to salinity stress // Ann. Bot. 2017. V. 119. P. 1–11.
- Zhou H., Shi H., Yang Y., et al. Insights into plant salt stress signaling and tolerance // J. gen. genom. 2024. V. 51. P. 16–34. https://doi.org/10.1016/j.jgg.2023.08.007
- Safdar H., Amin A., Shafiq Y., et al. A review: Impact of salinity on plant growth // Nat. Sci. 2019. V. 17. P. 34–40.
- Hao S., Wang Y., Yan Y., et al. A review on plant responses to salt stress and their mechanisms of salt resistance // Horticulturae. 2021. V. 7. P. 132.
- Silva-Herrera H., Wege S., Franzisky B.L., et al. Chloride transport and homeostasis in plants // Quant Plant Biol. 2025. V. 6. P. 1–10. https://dx.doi.org/10.1017/qpb.2025.10008
- Keisham M., Mukherjee S., Bhatla S. Mechanisms of sodium transport in plants-progresses and challenges // Int. J. Mol. Sci. 2018. V. 19. P. 647. https://doi.org/10.3390/ijms19030647
- Ketehouli T., Idrice Carther K.F., Noman M., et al. Adaptation of plants to salt stress: characterization of Na+ and K+ transporters and role of CBL gene family in regulating salt stress response // Agronomy. 2019. V. 9. P. 687. https://doi.org/10.3390/agronomy9110687
- Joshi S., Nath J., Singh A.K., Pareek A., Joshi R. Ion transporters and their regulatory signal transduction mechanisms for salinity tolerance in plants // Physiol. Plant. 2022. V. 174. P. e13702.
- Lindberg S., Premkumar A. Ion changes and signaling under salt stress in wheat and other important crops // Plants. 2024. V. 13. P. 46. https://doi.org/10.3390/plants13010046
- Kronzucker H.J., Britto D.T. Sodium transport in plants: a critical review // New Phytol. 2011. V. 189. P. 54–81.
- Lorenzen I., Aberle T., Plieth C. Salt stress-induced chloride flux: a study using transgenic Arabidopsis expressing a fluorescent anion probe // Plant J. 2004. V. 38. P. 539–544.
- Teakle N.L., Tyerman S.D. Mechanisms of Cl- transport contributing to salt tolerance // Plant Cell Env. 2010. V. 33. P. 566–589.
- Nedelyaeva O.I., Shuvalov A.V., Balnokin Y.V. Chloride channels and transporters of the CLC family in plants // Russ. J. Plant Physiol. 2020. V. 67. P. 767–784. https://doi.org/10.1134/S1021443720050106
- Kovermann P., Meyer S., Hörtensteiner S., et al. The Arabidopsis vacuolar malate channel is a member of the ALMT family // Plant J. 2007. V. 52. P. 1169–1180.
- Meyer S., Scholz-Starke J., De Angeli A., et al. Malate transport by the vacuolar AtALMT6 channel in guard cells is subject to multiple regulation // Plant J. 2011. V. 67. P. 247–257.
- Galvan-Ampudia C.S., Julkowska M.M., Darwish E., et al. Halotropism is a response of plant roots to avoid a saline environment // Curr. Biol. 2013. V. 23. P. 2044–2050.
- Mazumder A., Gaur V.S., Kole P.C., Mondal T.K. Root halotropism in plants: tolerance or escape? // Rhizosphere. 2024. V. 33. P. 101002. https://doi.org/10.1016/j.rhisph.2024.101002
- Jiang Z., Zhou X., Tao M., et al. Plant cell-surface gIPC sphingolipids sense salt to trigger Ca2+ influx // Nat. 2019. V. 572. P. 341–346.
- Steinhorst L., Kudla J. How plants perceive salt // Nat. 2019. V. 572. P. 318–320. https://doi.org/10.1038/d41586-019-02289-x
- Feng W., Kita D., Peaucelle A., et al. The FERONIA receptor kinase maintains cell-wall integrity during salt stress through Ca2+ signaling // Curr. Biol. 2018. V. 28. P. 666–675.
- Demidchik V., Tester M. Sodium fluxes through nonselective cation channels in the plasma membrane of protoplasts from Arabidopsis roots // Plant Physiol. 2002. V. 128. P. 379–387.
- Demidchik V., Maathuis F.J.M. Physiological roles of nonselective cation channels in plants: from salt stress to signalling and development // New Phytol. 2007. V. 175. P. 387–405.
- Kiegle E., Moore C.A., Haseloff J., Tester M.A., Knight M.R. Cell-type-specific calcium responses to drought, salt and cold in the Arabidopsis root // Plant J. 2000. V. 23. P. 267–278.
- Choi W.G., Toyota M., Kim S.H., Hilleary R., Gilroy S. Salt stress-induced Ca2+ waves are associated with rapid, long-distance root-to-shoot signaling in plants // PNAS. 2014. V. 111. P. 6497–6502.
- Demidchik V., Shabala S. Mechanisms of cytosolic calcium elevation in plants: the role of ion channels, calcium extrusion systems and NADPH oxidase-mediated ‘ROS-Ca2+ Hub’// Funct. Plant Biol. 2017. V. 45. P. 9–27.
- Ji H., Pardo J.M., Batelli G., et al. The Salt overly sensitive (SOS) pathway: established and emerging roles // Mol. Plant. 2013. V. 6. P. 275–286.
- Quan R., Lin H., Mendoza I., et al. SCABP8/CBL10, a putative calcium sensor, interacts with the protein kinase SOS2 to protect Arabidopsis shoots from salt stress // Plant Cell. 2007. V. 19. P. 1415–1431.
- Yang Y., Guo Y. unraveling salt stress signaling in plants // J. Integr. Plant Biol. 2018. V. 60. P. 796–804.
- Halfter U., Ishitani M., Zhu J.K. The Arabidopsis SOS2 protein kinase physically interacts with and is activated by the calcium-binding protein SOS3 // Proc. Natl. Acad. Sci. u. S. A. 2000. V. 97. P. 3735–3740.
- Lin J., Wang Y., Wang G. Salt stress-induced programmed cell death in tobacco protoplasts is mediated by reactive oxygen species and mitochondrial permeability transition pore status // J. Plant Physiol. 2006. V. 163. P. 731–739. https://doi.org/10.1016/j.jplph.2005.06.016
- Quintero F.J., Martinez-Atienza J., Villalta I., et al. Activation of the plasma membrane Na+/H+ antiporter Salt-Overly-Sensitive 1 (SOS1) by phosphorylation of an auto-inhibitory C-terminal domain // PNAS. 2011. V. 108. P. 2611–2616. https://doi.org/10.1073/pnas.1018921108
- Donaldson L., Ludidi N., Knight M.R., Gehring C., Denby K. Salt and osmotic stress cause rapid increases in Arabidopsis thaliana cgMP levels // FEBS Lett. 2004. V. 569. P. 317–320.
- Miller G.A.D., Suzuki N., Ciftci-Yilmaz S., Mittler R.O.N. Reactive oxygen species homeostasis and signalling during drought and salinity stresses // Plant Cell Envir. 2010. V. 33. P. 453–467.
- Testerink C., Munnik T. Phosphatidic acid: a multifunctional stress signaling lipid in plants // Trends Plant Sci. 2005. V. 10. P. 368–375.
- Testerink C., Munnik T. Molecular, cellular, and physiological responses to phosphatidic acid formation in plants // J. Exp. Bot. 2011. V. 62. P. 2349–2361.
- Qin W., Pappan K., Wang X. Molecular heterogeneity of phospholipase D (PLD): cloning of PLDγ and regulation of plant PLDγ, -β, and -α by polyphosphoinositides and calcium // J. Biol. Chem. 1997. V. 272. P. 28267–28273.
- McLoughlin F., Testerink C. Phosphatidic acid, a versatile water-stress signal in roots // Front. Plant Sci. 2013. V. 4. P. 525.
- Julkowska M.M., McLoughlin F., Galvan-Ampudia C.S., et al. Identification and functional characterization of the Arabidopsis Snf1-related protein kinase SnRK2.4 phosphatidic acid-binding domain // Plant Cell Envir. 2015. V. 38. P. 614–624.
- Kulik A., Wawer I., Krzywińska E., Bucholc M., Dobrowolska G. SnRK2 protein kinases — key regulators of plant response to abiotic stresses // OMICS. 2011. V. 15. P. 859–872.
- Soma F., Mogami J., Yoshida T., et al. ABA-unresponsive SnRK2 protein kinases regulate mRNA decay under osmotic stress in plants // Nat. Plants. 2017. V. 3. P. 16204.
- Kawa D., Meyer A.J., Dekker H.L., et al. SnRK2 Protein Kinases and mRNA decapping machinery control root development and response to salt // Plant Physiol. 2020. V. 182. P. 361–377.
- Sun J., Dai S., Wang R., et al. Calcium mediates root K+/Na+ homeostasis in poplar species differing in salt tolerance // Tree Physiol. 2009. V. 29. P. 1175–1186.
- Gaxiola R.A., Palmgren M.G., Schumacher K. Plant proton pumps // FEBS Lett. 2007. V. 581. P. 2204. https://doi.org/10.1016/j.febslet.2007.03.050
- Bassil E., Blumwald E. The ins and outs of intracellular ion homeostasis: NHX-type cation/H+ transporters // Curr. Opin. Plant Biol. 2014. V. 22. P. 1–6.
- Isayenkov S.V., Maathuis F.J.M. Plant salinity stress: many unanswered questions remain // Front. Plant Sci. 2019. V. 10. P. 80. https://doi.org/10.3389/fpls.2019.00080
- Mishra G., Mohapatra S.K., Rout G.R. Plant membrane transporters function under abiotic stresses: a review // Planta. 2024. V. 260. P. 125. https://doi.org/10.1007/s00425-024-04548-2
- Roy S.J., Negrão S., Tester M. Salt resistant crop plants // Curr. Opin. Biotech. 2014. V. 26. P. 115–124.
- Wu H., Shabala L., Liu X., et al. Linking salinity stress tolerance with tissue-specific Na+ sequestration in wheat roots // Front. Plant Sci. 2015. V. 6. P. 71.
- Wang Y., Wu W.H. Potassium transport and signaling in higher plants // Annu. Rev. Plant Biol. 2013. V. 64. P. 451–476. https://doi.org/10.1146/annurev-arplant-050312-120153
- Leigh R.A., Wyn Jones R.G. A hypothesis relating critical potassium concentrations for growth to the distribution and functions of this ion in the plant cell // New Phytol. 1984. V. 97. P. 1.
- Armengaud P., Sulpice R., Miller A.J., et al. Multilevel analysis of primary metabolism provides new insights into the role of potassium nutrition for glycolysis and nitrogen assimilation in Arabidopsis roots // Plant Physiol. 2009. V. 150. P. 772–785. https://doi.org/10.1104/pp.108.133629
- Almeida D.M., Oliveira M.M., Saibo N.J.M. Regulation of Na+ and K+ homeostasis in plants: towards improved salt stress tolerance in crop plants // genet. Mol. Biol. 2017. V. 40. P. 326–345.
- Jiang X., Leidi E.O., Pardo J.M. How do vacuolar NHX exchangers function in plant salt tolerance? // Plant Signal. Behav. 2010. V. 5. P. 792–795.
- Nieves-Cordones M., Alemán F., Martínez V., Rubio F. The Arabidopsis thaliana HAK5 K+ transporter is required for plant growth and K+ acquisition from low K+ solutions under saline conditions // Mol. Plant. 2010. V. 3. P. 326–333.
- Shabala S., Cuin T.A. Potassium transport and plant salt tolerance // Physiol. Plant. 2008. V. 133. P. 651–669.
- Deolu-Ajayi A.O., Meyer A.J., Haring M.A., Julkowska M.M., Testerink C. Root halotropism in plants: tolerance or escape? // Rhizosphere. 2024. V. 33. P. 101002. https://doi.org/10.1016/j.rhisph.2024.101002
- Cellier F., Conéjéro G., Ricaud L., et al. Characterization of AtCHX17, a member of the cation/H+ exchangers, CHX family, from Arabidopsis thaliana suggests a role in K+ homeostasis // Plant J. 2004. V. 39. P. 834–846.
- Hall D., Evans A.R., Newbury H.J., Pritchard J. Functional analysis of CHX21: a putative sodium transporter in Arabidopsis // J. Exp. Bot. 2006. V. 57. P. 1201–1210.
- Feng W., Lindner H., Robbins N.E., Dinneny J.R. growing out of stress: the role of cell- and organ-scale growth control in plant water-stress responses // Plant Cell. 2016. V. 28. P. 1769–1782.
- Cosgrove D.J. Diffuse growth of plant cell walls // Plant Physiol. 2018. V. 176. P. 16–27.
- Zwiewka M., Nodzyński T., Robert S., Vanneste S., Friml J. Osmotic stress modulates the balance between exocytosis and clathrin-mediated endocytosis in Arabidopsis thaliana // Mol. Plant. 2015. V. 8. P. 1175–1187.
- Flowers T.J., Munns R., Colmer T.D. Sodium chloride toxicity and the cellular basis of salt tolerance in halophytes // Ann. Bot. 2015. V. 115. P. 419–431.
- Shabala S., White R.G., Djordjevic M.A., Ruan Y.-L., Mathesius U. Root-to-shoot signalling: integration of diverse molecules, pathways and functions // Funct. Plant Biol. 2016. V. 43. P. 87–104.
- Demidchik V., Shabala S., Isayenkov S., Cuin T.A., Pottosin I. Calcium transport across plant membranes: mechanisms and functions // New Phytol. 2018. V. 220. P. 49–69. https://doi.org/10.1111/nph.15266
- Yang X., Bassham D.C. New insight into the mechanism and function of autophagy in plant cells // Int. Rev. Cell Mol. Biol. 2015. V. 320. P. 1–40.
- Pu Y., Luo X., Bassham D.C. TOR-dependent and-independent pathways regulate autophagy in Arabidopsis thaliana // Front Plant Sci. 2017. V. 8. P. 1204.
- Wang X., Chen Z., Sui N. Sensitivity and responses of chloroplasts to salt stress in plants // Front. Plant Sci. 2024. V. 15. P. 1374086. https://doi.org/10.3389/fpls.2024.1374086
- Liu Y., Bassham D.C. Autophagy: pathways for self-eating in plant cells // Annu. Rev. Plant Biol. 2012. V. 63. P. 215.
- Zhou X.M., Zhao P., Wang W., et al. A comprehensive, genome-wide analysis of autophagy-related genes identified in tobacco suggests a central role of autophagy in plant response to various environmental cues // DNA res. 2015. V. 22. P. 245–257. https://doi.org/10.1093/dnares/
- Zhai Y., Guo M., Wang H., et al. Autophagy, a conserved mechanism for protein degradation, responds to heat, and other abiotic stresses in Capsicum annuum L. // Front. Plant Sci. 2016. V. 7. P. 131. https://doi.org/10.3389/fpls.2016.00131
- Avin-Wittenberg T. Autophagy and its role in plant abiotic stress management // Plant Cell Envir. 2019. V. 42. P. 1045–1053. https://doi.org/10.1111/pce.13404.
- Floyd B.E., Pu Y., Soto-Burgos J., Bassham D.C. To live or die: autophagy in plants // Plant Prog. Cell Death. V. 2015. P. 269–300.
- Petersen M., Avin-Wittenberg T., Bassham D.C., et al. Autophagy in plants // Autophagy Reports. 2024. V. 3. P. 2395731.
- Huh G.-H., Damsz B., Matsumoto T.K., et al. Salt causes ion disequilibrium-induced programmed cell death in yeast and plants // Plant J. 2002. V. 29. P. 649–659. https://doi.org/10.1046/j.0960-7412.2001.01247.x
- Luo L., Zhang P., Zhu R., et al. Autophagy is rapidly induced by salt stress and is required for salt tolerance in Arabidopsis // Front Plant Sci. 2017. V. 8. P. 1459. https://doi.org/10.3389/fpls.2017.01459
- Marshall R.S., Vierstra R.D. Autophagy: the master of bulk and selective recycling // Annu. Rev. Plant Biol. 2018. V. 69. P. 173–208.
- Xiang L., Etxeberria E., Van den Ende W. Vacuolar protein sorting mechanisms in plants // FEBS J. 2013. V. 280. P. 979–993.
- Liu Y., Xiong Y., Bassham D.C. Autophagy is required for tolerance of drought and salt stress in plants // Autophagy. 2009. V. 5. P. 954–963.
- Zhou J., Wang J., Cheng Y., et al. NBR1-mediated selective autophagy targets insoluble ubiquitinated protein aggregates in plant stress responses // PLoS genet. 2013. V. 9. P. e1003196. https://doi.org/10.1371/journal.pgen.1003196
- Michaeli S., Honig A., Levanony H., Peled-Zehavi H., Galili G. Arabidopsis ATg8-INTERACTINg PROTEIN1 is involved in autophagy-dependent vesicular trafficking of plastid proteins to the vacuole // Plant Cell. 2014. V. 26. P. 4084–4101. https://doi.org/10.1105/tpc.114.129999
- Pu Y., Soto-Burgos J., Bassham D.C. Regulation of autophagy through SnRK1 and TOR signaling pathways // Plant Signal. Behav. 2017. V. 12. P. e1395128.
- Xu Y., Chen S.Y., Ross K.N., Balk S.P. Androgens induce prostate cancer cell proliferation through mammalian target of rapamycin activation and post-transcriptional increases in cyclin D proteins // Cancer Res. 2006. V. 66. P. 7783–7792. https://doi.org/10.1158/0008-5472.CAN-05-4472
- Ragel P., Ródenas R., García-Martín E., et al. The CBL-interacting protein kinase CIPK23 regulates HAK5-mediated high-affinity K+ uptake in Arabidopsis roots // Plant Physiol. 2015. V. 169. P. 2863–2873. https://doi.org/10.1104/pp.15.01401
- Li K.L., Xue H., Tang R.J., Luan S. TORC pathway intersects with a calcium sensor kinase network to regulate potassium sensing in Arabidopsis // Proc. Natl. Acad. Sci. u. S. A. 2023. V. 120. P. e2316011120. https://doi.org/10.1073/pnas.2316011120
- Tang T.M.S., Luk L.Y.P. Asparaginyl endopeptidases: enzymology, applications and limitations // Org. Biomol. Chem. 2021. V. 19. P. 5048–5062.
- Qi H., Xia F.N., Xie L.J., et al. TRAF family proteins regulate autophagy dynamics by modulating AuTOPHAgY PROTEIN6 stability in Arabidopsis // Plant Cell. 2018. V. 29. P. 890–911. https://doi.org/10.1105/tpc.17.00056
- Baena-González E., Lunn J.E. SnRK1 and trehalose 6-phosphate-two ancient pathways converge to regulate plant metabolism and growth // COPB. 2020. V. 55. P. 52–59.
- Van Leene J., Eeckhout D., Gadeyne A., et al. Mapping of the plant SnRK1 kinase signalling network reveals a key regulatory role for the class II T6P synthase-like proteins. // Nat. Plants. 2022. V. 8. P. 1245–1261. https://doi.org/10.1038/s41477-022-01269-w
- Blanford J., Zhai Z., Baer M.D., et al. Molecular mechanism of trehalose 6-phosphate inhibition of the plant metabolic sensor kinase SnRK1 // Sci. Adv. 2022. V. 10. P. eadn0895. https://doi.org/10.1126/sciadv.adn0895
- Yang C., Li X., Yang L., et al. A positive feedback regulation of SnRK1 signaling by autophagy in plants // Mol. Plant. 2023. V. 16. P. 1192–1211. https://doi.org/10.1016/j.molp.2023.07.001
- Soto-Burgos J., Bassham D.C. SnRK1 activates autophagy via the TOR signaling pathway in Arabidopsis thaliana // PLoS ONE. 2017. V. 12. P. e0182591.
- Chen L., Su Z.Z., Huang L., et al. genetic analyses of the Arabidopsis ATg1 kinase complex reveal both kinase-dependent and independent autophagic routes during fixed-carbon starvation // Plant Cell. 2019. V. 31. P. 2973–2995. https://doi.org/10.3389/fpls.2017.01201
- Huang X., Zheng C., Liu F., et al. genetic analyses of the Arabidopsis ATg1 kinase complex reveal both kinase-dependent and independent autophagic routes during fixed-carbon starvation // Plant Cell. 2019. V. 31. P. 2973–2995.
- Hasan M.M., Liu X.D., Waseem M., et al. ABA activated SnRK2 kinases: an emerging role in plant growth and physiology // Plant Signal. Behav. 2022. V. 17. P. 2071024.
- Xiong Y., Contento A.L., Nguyen P.Q., Bassham D.C. Degradation of oxidized proteins by autophagy during oxidative stress in Arabidopsis // Plant Physiol. 2007. V. 143. P. 291–299. https://doi.org/10.1104/pp.106.092106
- Scherz-Shouval R., Shvets E., Fas E., et al. Reactive oxygen species are essential for autophagy and specifically regulate the activity of Atg4 // EMBO J. 2007. V. 26. P. 1749–1760. https://doi.org/10.1038/sj.emboj.7601623
- Hayward A.P., Tsao J., Dinesh-Kumar S.P. Autophagy and plant innate immunity: Defense through degradation // Semin. Cell Dev. Biol. 2009. V. 20. P. 1041–1047. https://doi.org/10.1016/j.semcdb.2009.04.012
- Rosenberger C.L., Chen J. To grow or not to grow: TOR and SnRK2 coordinate growth and stress response in Arabidopsis // Mol. Cell. 2018. V. 69. P. 3–4. https://doi.org/10.1016/j.molcel.2017.12.013
- Signorelli S., Tarkowski Ł.P., Van den Ende W., Bassham D.C. Linking autophagy to abiotic and biotic stress responses // Trends Plant Sci. 2019. V. 24. P. 413–430. https://doi.org/10.1016/j.tplants.2019.02.001
- Mallén-Ponce M.J., Pérez-Pérez M.E. Redox-mediated activation of ATg3 promotes ATg8 lipidation and autophagy progression in Chlamydomonas reinhardtii // Plant Physiol. 2023. V. 194. P. 359–375. https://doi.org/10.1093/plphys/kiad520
- Goussi R., Manaa A., Derbali W., et al. Comparative analysis of salt stress, duration and intensity, on the chloroplast ultrastructure and photosynthetic apparatus in Thellungiella salsuginea // J. Photochem. Photobiol. B: Biol. 2018. V. 183. P. 275–287. https://doi.org/10.1016/j.jphotobiol.2018.04.047
- Nakamura S., Hidema J., Sakamoto W., Ishida H., Izumi M. Selective elimination of membrane-damaged chloroplasts via microautophagy // Plant Physiol. 2018. V. 177. P. 1007–1026. https://doi.org/10.1104/pp.18.00444
- Wan C., Ling Q. Functions of autophagy in chloroplast protein degradation and homeostasis // Front. Plant Sci. 2022. V. 13. P. 993215. https://doi.org 10.3389/fpls.2022.993215
- Wijerathna-Yapa A., Signorelli S., Fenske R., et al. Autophagy mutants show delayed chloroplast development during de-etiolation in carbon limiting conditions // Plant J. 2021. V. 108. P. 459–477. https://doi.org/10.1111/tpj.15452
- Wan C., Zhang H., Cheng H., et al. Selective autophagy regulates chloroplast protein import and promotes plant stress tolerance // EMBO J. 2023. V. 42. P. e112534. https://doi.org/10.15252/embj.2022112534
- Shabala S., Cuin T.A., Prismall L., Nemchinov L.G. Expression of animal CED-9 anti-apoptotic gene in tobacco modifies plasma membrane ion fluxes in response to salinity and oxidative stress // Planta. 2007. V. 227. P. 189–197. https://doi.org/10.1007/s00425-007-0606-z
- Fedoreyeva L.I., Lazareva E.M., Shelepova O.V., Baranova E.N., Kononenko N.V. Salt-induced autophagy and programmed cell death in wheat // Agronomy. 2022. V. 12. P. 1909.
- Yue J.Y., Wang Y.J., Jiao J.L., Wang H.Z. Silencing of ATg2 and ATg7 promotes programmed cell death in wheat via inhibition of autophagy under salt stress // Ecotoxicol. Environ. Saf. 2021. V. 225. P. 112761. https://doi.org/10.1016/j.ecoenv.2021.112761
- Tabur S., Demir K. Protective roles of exogenous polyamines on chromosomal aberrations in Hordeum vulgare exposed to salinity // Biologia. 2010. V. 65. P. 947–953. https://doi.org/10.2478/s11756-010-0118-3
- Yazdani M., Mahdieh M. Salinity induced apoptosis in root meristematic cells of rice // IJBBB. 2012. V. 2.
- Egorova V.P., Lo Y.S., Dai H. Programmed cell death induced by heat shock in mung bean seedlings // Bot. Stud. 2011. V. 52. P. 73–78.
- Fan T., Xing T. Heat shock induces programmed cell death in wheat leaves // Biol. Plant. 2004. V. 48. P. 389–394.
- Cvjetko P., Balen B., Peharec Štefanić P., et al. Dynamics of heat-shock induced DNA damage and repair in senescent tobacco plants // Biol. Plant. 2014. V. 58. P. 71–79.
- Katsuhara M., Kawasaki T. Salt stress induced nuclear and DNA degradation in meristematic cells of barley roots // Plant Cell Physiol. 1996. V. 37. P. 169–173.
- Katsuhara M. Apoptosis-like cell death in barley roots under salt stress // Plant Cell Physiol. 1997. V. 38. P. 1091–1093. https://doi.org/10.1093/oxfordjournals.pcp.a02927
- Sihi O., Sharma O.K., Pathak H., et al. Effect of organic farming on productivity and quality of basmati rice // Oryza. 2012. V. 49. P. 24–29.
- Oney-Birol S. Exogenous L-carnitine promotes plant growth and cell division by mitigating genotoxic damage of salt stress // Sci. Rep. 2019. V. 9. P. 17229.
- Jabeen Z., Hussain N., Wu D., et al. Difference in physiological and biochemical responses to salt stress between Tibetan wild and cultivated barleys // Acta Physiol. Plant. 2015. V. 37. P. 180. https://doi.org/10.1007/s11738-015-1920-x
Supplementary files


