Морфофизиологические и биохимические характеристики сарциноидной микроводоросли Chlorosarcinopsis eremi (Chlorophyceae, Chlorophyta)

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Исследован штамм VKM Al-132 зеленой сарциноидной микроводоросли, изолированный из каштановой почвы зоны сухих степей (Волгоградская область, Россия). По результатам световой и сканирующей электронной микроскопии, а также молекулярно-филогенетического анализа гена 18S рРНК и спейсера ITS2 штамм был идентифицирован как Chlorosarcinopsis eremi. Изучены особенности его роста и вторичного каротиногенеза в условиях двухстадийной накопительной культуры. Средняя продуктивность по сухой биомассе за 21 сут. эксперимента составляла 0.12 г/л·сут., а по суммарным каротиноидам – 0.2 мг/л·сут. В конце стадии вторичного каротиногенеза при доле суммарных каротиноидов в сухой биомассе около 0.25% доминирующими фракциями были кантаксантин и диэфиры астаксантина, причем сумма эфиров астаксантина достигала 36% от суммарных каротиноидов. Показано, что штамм VKM Al-132 может служить потенциально перспективным объектом дальнейших экспериментальных работ, направленных на оптимизацию условий для интенсификации процесса биосинтеза кетокаротиноидов.

全文:

受限制的访问

作者简介

Н. Данцюк

Федеральное государственное бюджетное учреждение науки Институт биологии южных морей им. А.О. Ковалевского РАН

编辑信件的主要联系方式.
Email: nterent@mail.ru
俄罗斯联邦, Севастополь

И. Чубчикова

Федеральное государственное бюджетное учреждение науки Институт биологии южных морей им. А.О. Ковалевского РАН

Email: nterent@mail.ru
俄罗斯联邦, Севастополь

А. Темралеева

Институт биохимии и физиологии микроорганизмов им. Г.К. Скрябина РАН, ФИЦ ПНЦБИ РАН

Email: nterent@mail.ru

Всероссийская коллекция микроорганизмов (ВКМ)

俄罗斯联邦, Пущино

Г. Минюк

Федеральное государственное бюджетное учреждение науки Институт биологии южных морей им. А.О. Ковалевского РАН

Email: nterent@mail.ru
俄罗斯联邦, Севастополь

В. Дробецкая

Федеральное государственное бюджетное учреждение науки Институт биологии южных морей им. А.О. Ковалевского РАН

Email: nterent@mail.ru
俄罗斯联邦, Севастополь

参考

  1. Groover R.D., Bold H.C. The taxonomy and comparative physiology of the Chlorosarcinales and certain other edaphic algae // Phycological studies VIII / Austin, Texas, USA. Univ. Texas Publications. 1969. № 6907. Р. 1.
  2. Андреева В.М. Почвенные и аэрофильные зеленые водоросли (Chlorophyta: Tetrasporales, Chlorococcales, Chlorosarcinales) / Спб.: Наука, 1998. 351 с.
  3. Friedl T., O’Kelly C.J. Phylogenetic relationships of green algae assigned to the genus Planophila (Chlorophyta): evidence from 18S rDNA sequence data and ultrastructure // Eur. J. Phycol. 2002. V. 37. Р. 373. https://doi.org/10.1017/S0967026202003712
  4. Friedl T. Evolution of the polyphyletic genus Pleurastrum (Chlorophyta): inferences from nuclear-encoded ribosomal DNA sequences and motile cell ultrastructure // Phycol. 1996. V. 35. Р. 456. https://doi.org/10.2216/i0031-8884-35-5-456.1
  5. Watanabe S., Mitsui K., Nakayama T., Inouye I. Phylogenetic relationships and taxonomy of sarcinoid green algae: Chlorosarcinopsis, Desmotetra, Sarcinochlamys gen. nov., Neochlorosarcina, and Chlorosphaeropsis (Chlorophyceae, Chlorophyta) // J. Phycol. 2006. V. 42. Р. 679. https://doi.org/10.1111/j.1529-8817.2006.00196.x
  6. Соловченко А.Е. Физиология и адаптивное значение вторичного каротиногенеза у зеленых микроводорослей // Физиология растений. 2013. Т. 60. С. 3. https://doi.org/10.7868/S0015330313010089
  7. Jeffers T.L., Roth M.S. Revealing mechanisms of algal astaxanthin production and bioengineering potential using multiomics // Global Perspectives on Astaxanthin: From Industrial Production to Food, Health, and Pharmaceutical Applications / Eds. G.A. Ravishankar, R.R. Ambati. 2021. P. 181. https://doi.org/10.1016/B978-0-12-823304-7.00010-6 0
  8. Chekanov K. Diversity and distribution of carotenogenic algae in Europe: A review // Mar. Drugs. 2023. V. 21. Р. 108. https://doi.org/10.3390/md21020108
  9. Cherdchukeattisak P., Fraser P.D., Purton S., Brocklehurst T.W. Detection and enhancement of ketocarotenoid accumulation in the newly isolated sarcinoid green microalga Chlorosarcinopsis PY02 // Biology. 2018. V. 7. Р. 1. http://dx.doi.org/10.3390/biology7010017
  10. Fučíková K., Lewis P.O., Neupane S., Karol K.G., Lewis L.A. Order, please! Uncertainty in the ordinal-level classification of Chlorophyceae // Peer J. 2019. V. 7 e6899. https://doi.org/10.7717/peerj.6899
  11. Khani-Juyabad F., Mohammadi P., Zarrabi M. Comparative analysis of Chlorosarcinopsis eremi mitochondrial genome with some Chlamydomonadales algae // Physiol. Mol. Biol. Plants. 2019. V. 25. Р. 1301. https://doi.org/10.1007/s12298-019-00696-y
  12. Чубчикова И.Н., Дробецкая И.В., Данцюк Н.В., Челебиева Э.С. Оптимизация метода фиксации пресноводных микроводорослей (Scenedesmaceae, Chlorophyta) для первичной идентификации с использованием сканирующей электронной микроскопии // Вопросы современной альгологии. 2022. № 1. С. 102. https://doi.org/10.33624/2311-0147-2022-1(28)-102-109
  13. Katana A., Kwiatowski J., Spalik K., Zakrys B., Szalacha E., Szymanska H. Phylogenetic position of Koliella (Chlorophyta) as inferred from nuclear and chloroplast small subunit rDNA // J. Phycol. 2001. V. 37. Р. 443.
  14. White T.J., Bruns T.D., Lee S., Taylor J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics // PCR protocols, a guide to methods and applications / Eds. M.A. Innis et al. Academic Press. San Diego. 1990. P. 315. https://doi.org/10.1016/B978-0-12-372180-8.50042-1
  15. Nakada T., Misawa K., Nozaki H. Molecular systematics of Volvocales (Chlorophyceae, Chlorophyta) based on exhaustive 18S rRNA phylogenetic analyses // Mol. Phylogenet. Evol. 2008. V. 48. P. 281. https://doi: 10.1016/j.ympev.2008.03.016
  16. Nakada T., Soga T., Tomita M., Nozaki H. Chlorogonium complexum sp. nov. (Volvocales, Chlorophyceae), and morphological evolution of Chlorogonium // Eur. J. Phycol. 2010. V. 45. Р. 97. https://doi.org/10.1080/09670260903383263
  17. Минюк Г.С., Челебиева Э.С., Чубчикова И.Н. Особенности вторичного каротиногенеза у Bracteacoccus minor (Chlorophyta) в условиях двухстадийной культуры // Альгология. 2015. Т. 25. С. 21. http://dx.doi.org/10.15407/alg25.01.02
  18. Bischoff H.W., Bold H.C. Some soil algae from enchanted rock and related algal species // Phycol. Stud. 1963. V. 4. P. 1.
  19. Минюк Г.С., Чубчикова И.Н., Дробецкая И.В., Данцюк Н.В., Челебиева Э.С. РФ Патент 2661086, 2018.
  20. Vonshak A. Microalgae: Laboratory growth techniques and outdoor biomass production // Techniques in Bioproductivity and Photosynthesis / Eds. J. Coombs et al. Pergamon Press. Oxford. 1985. P. 188.
  21. Solovchenko A., Merzlyak M., Khozin-Goldberg I., Cohen Z., Boussiba S. Coordinated carotenoid and lipid syntheses induced in Parietochloris incisa (Chlorophyta, Trebouxiophyceae) mutant deficient in Δ5 desaturase by nitrogen starvation and high light // J. Phycol. 2010. V. 46. P. 763. http://dx.doi.org/10.1111/j.1529-8817.2010.00849.x
  22. Lichtenthaler H.K. Chlorophylls and carotenoids: pigments of photosynthetic membranes // Meth. Enzym. 1987. V. 148. P. 350.
  23. Дробецкая И.В, Минюк Г.С., Чубчикова И.Н., Боровков А.Б. Определение содержания астаксантина и кантаксантина у зеленых микроводорослей методом тонкослойной хроматографии // Экология моря. 2009. Спец. вып. 79. Биотехнология водорослей. С. 50.
  24. Чубчикова И.Н., Дробецкая И.В. Оценка антирадикальной активности вторичных каротиноидов у четырех видов зеленых микроводорослей порядка Sphaeropleales в системе in vitro // Труды Карадагской научной станции им. Т.И. Вяземского – природного заповедника РАН. 2020. Вып. 2. С. 66. https://doi.org/10.21072/eco.2021.14.07
  25. Чубчикова И.Н., Дробецкая И.В., Минюк Г.С., Данцюк Н.В., Челебиева Э.С. Скрининг одноклеточных зеленых водорослей как потенциальных источников природных кетокаротиноидов. 2. Особенности роста и вторичного каротиногенеза у представителей рода Bracteacoccus (Chlorophyсeae) // Морск. экол. журн. 2011. Т. 10. С. 91.
  26. Minyuk G., Chelebieva E., Chubchikova I., Dantsyuk N., Drobetskaya I., Sakhon E., Chekanov K., Solovchenko A. Stress-induced secondary carotenogenesis in Coelastrella rubescens, a producer of value-added keto-carotenoids // Algae. 2017. V. 32. P. 245. https://doi.org/10.4490/algae.2017.32.8.6
  27. Ali H.E.A., Vorisek F., Dowd S.E., Kesner S., Song Y., Qian D., Crocker M. Formation of lutein, ß-carotene and astaxanthin in a Coelastrella sp. isolate // Molecules. 2022. V. 27. P. 6950. https://doi.org/10.3390/molecules27206950
  28. Orosa M., Torres E., Fidalgo P., Abalde J. Production and analysis of secondary carotenoids in green algae // J. Appl. Phycol. 2000. V. 12. P. 553.
  29. Minyuk G., Sidorov R., Solovchenko A. Effect of nitrogen source on the growth, lipid, and valuable carotenoid production in the green microalga Chromochloris zofingiensis // J. Appl. Phycol. 2020. V. 32. P. 923. https://doi.org/10.1007/s10811-020-02060-0

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Strain C. eremi VKM Al-132. a – young vegetative cells (SEM). Light microscopy: b – “naked” zoospores, c – sarcinoid packages, d – mucous complex complexes of cells. Scale: a – 2 microns, b, C, d – 10 microns.

下载 (178KB)
3. Fig. 2. Phylogenetic position of the VKM Al-132 strain on the 18S rRNA gene tree (1737 bp). Bootstrap values are indicated as statistical support for tree nodes (<70% are not shown). The model of nucleotide substitutions: GTR + I + G. Notation: the strain under study is highlighted in bold, * is the authentic strain; (T) is the type species.

下载 (579KB)
4. Fig. 3. Dynamics of biomass (SB) of the C. eremi strain VKM Al-132, at the “green” (I) and “red" (II) stages of the experiment (X ± m).

下载 (68KB)
5. Fig. 4. Dynamics of pigment composition in culture and biomass of the strain C. eremi VKM Al-132, at the “green” (I) and “red" (II) stages of the experiment: a, g – Cl a, b, d – Cl b, c, e – total Kars (X ± m).

下载 (196KB)
6. Fig. 5. Strain VKM Al-132 at different stages of the experiment: (a) – “green", (b) – “red". The scale is 15 microns.

下载 (189KB)
7. Fig. 6. Culture of C. eremi VKM Al-132 (a) and chromatogram of carotenoids (b) at the end of the “red” stage. 1 – lutein, 2 – adonixanthine (monoesters), 3 – astaxanthin (monoesters), 4 – canthaxanthin, 5 – adonirubin (esters), 6 – astaxanthin (diesters), 7 – β-carotene.

下载 (111KB)
8. Fig. 7. Spectra of acetone extracts of carotenoids of the C. eremi strain VKM Al-132 at the end of the “red” stage of the experiment. 1 – lutein, 2– β-carotene, 3 – canthaxanthin, 4 – adonixanthin (monoesters), 5 – astaxanthin (diesters), 6 – astaxanthin (monoesters), 7 – adonirubin (monoesters), 8 – echinenone.

下载 (183KB)
9. Supplement
下载 (37KB)

版权所有 © Russian Academy of Sciences, 2024

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».