Участие оксалатов в физиологических процессах у растений: потенциальная роль эндофитных бактерий – оксалотрофов
- Authors: Хайруллин Р.М.1, Максимов И.В.1
-
Affiliations:
- Институт биохимии и генетики – обособленное структурное подразделение Федерального государственного бюджетного научного учреждения Уфимского федерального исследовательского центра Российской академии наук
- Issue: Vol 71, No 6 (2024)
- Pages: 649-665
- Section: ОБЗОРЫ
- URL: https://journals.rcsi.science/0015-3303/article/view/272087
- DOI: https://doi.org/10.31857/S0015330324060011
- EDN: https://elibrary.ru/MAWQVZ
- ID: 272087
Cite item
Abstract
В обзоре изложены основные функции оксалатов (щавелевой кислоты и ее солей) в физиологических процессах у растений. Рассмотрено участие эндофитных бактерий – оксалотрофов и/или продуцентов щавелевой кислоты в регуляции ответных реакций растений на воздействия неблагоприятных факторов окружающей среды биотической и абиотической природы. Сделан вывод о перспективах развития нового направления в исследовании роли эндофитных бактерий в формировании оксалат-опосредованного адаптивного потенциала у растений.
Keywords
Full Text

About the authors
Р. М. Хайруллин
Институт биохимии и генетики – обособленное структурное подразделение Федерального государственного бюджетного научного учреждения Уфимского федерального исследовательского центра Российской академии наук
Author for correspondence.
Email: krm62@mail.ru
Russian Federation, Уфа
И. В. Максимов
Институт биохимии и генетики – обособленное структурное подразделение Федерального государственного бюджетного научного учреждения Уфимского федерального исследовательского центра Российской академии наук
Email: krm62@mail.ru
Russian Federation, Уфа
References
- Palmieri F., Estoppey A., House G.L., Lohberger A., Bindschedler S., Chain P.S.G., Junier P. Oxalic acid, a molecule at the crossroads of bacterial-fungal interactions // Adv. Appl. Microbiol. 2019. V. 106. P. 49. https://doi.org/10.1016/bs.aambs.2018.10.001
- Lawrie N.S., Cuetos N.M., Sini F., Salam G.A., Ding H., Vancolen A., Nelson J.M., Erkens R.H.J., Perversi G. Systematic review on raphide morphotype calcium oxalate crystals in angiosperms // AoB Plants. 2023. V. 15: plad031. https://doi.org/10.1093/aobpla/plad031
- Hartl W.P., Klapper H., Barbier B., Ensikat H.J., Dronskowski R., Müller P., Ostendorp G., Tye A., Bauer R., Barthlott W. Diversity of calcium oxalate crystals in Cactaceae // Can. J. Bot. 2007. V. 85. P. 501. https://doi.org/10.1139/B07-046
- Ronzhina D.A., Ivanov L.A., Lambers G., P’yankov V.I. Changes in chemical composition of hydrophyte leaves during adaptation to aquatic environment // Russ. J. Plant Physiol. 2009. V. 56. P. 355. https://doi.org/10.1134/S102144370903008X
- Tooulakou G., Giannopoulos A., Nikolopoulos D., Bresta P., Dotsika E., Orkoula M.G., Kontoyannis C.G., Fasseas C., Liakopoulos G., Klapa M.I., Karabourniotis G. Alarm photosynthesis: calcium oxalate crystals as an internal CO2 source in plants // Plant Physiol. 2016. V. 171. P. 2577. https://doi.org/10.1104/pp.16.00111
- Paiva E.A.S. Do calcium oxalate crystals protect against herbivory? // Sci. Nat. 2021. V. 108: 24. https://doi.org/10.1007/s00114-021-01735-z
- Dumas B., Freyssinet C., Pallett K.E. Tissue-specific expression of germin-like oxalate oxidase during development and funga1 infection of barley seedlings // Plant Physiol. 1995. V. 107. P. 1091. https://doi.org/10.1104/pp.107.4.1091
- Schürhoff P. Ozellen und Lichtkondensoren bei einigen Peperomia // Biohefte Bot. Zentralblatt. 1908. V. 23. P. 14.
- Nakata P.A. Advances in our understanding of calcium oxalate crystal formation and function in plants // Plant Sci. 2003. V. 164. P. 901. https://doi.org/10.1016/S0168-9452(03)00120-1
- Швартау В.В., Вирыч П.А., Маковейчук Т.И., Артеменко А.Ю. Кальций в растительных клетках // Вісник Дніпропетровського університету. Біологія, екологія. 2014. V. 22. P. 19. https://doi.org/10.15421/011403
- Mulet J.M., Campos F., Yenush L. Editorial: ion homeostasis in plant stress and development // Front. Plant Sci. 2020. V. 11: 618273. https://doi.org/10.3389/fpls.2020.618273
- Fenn L.B., Hasanein B., Burks C.M. Calcium-ammonium effects on growth and yield of small grains // Agronomy J. 1995. V. 87. P. 1041. https://doi.org/10.2134/agronj1995.00021962008700060002x
- Glyan’ko A.K. Signaling systems of rhizobia (Rhizobiaceae) and leguminous plants (Fabaceae) upon the formation of a legume-rhizobium symbiosis // Appl. Biochem. Microbiol. 2015. V. 51. P. 494. https://doi.org/10.1134/S0003683815050063
- Li J., Yang Y. How do plants maintain pH and ion homeostasis under saline-alkali stress? // Front. Plant Sci. 2023. V. 14: 1217193. https://doi.org/10.3389/fpls.2023.1217193
- Li P., Liu C., Luo Y., Shi H., Li Q., PinChu C., Li X., Yang J., Fan W. Oxalate in plants: metabolism, function, regulation, and application // J. Agric. Food Chem. 2022. V. 70. P. 16037. https://doi.org/10.1021/acs.jafc.2c04787
- Tian X., He M., Wang Z., Zhang J., Song Y., He Z., Dong Y. Application of nitric oxide and calcium nitrate enhances tolerance of wheat seedlings to salt stress // Plant Growth Regul. 2015. V. 77. P. 343. https://doi.org/10.1007/s10725-015-0069-3
- Elliott D.C. Calcium involvement in plant hormone action // Molecular and cellular aspects of calcium in plant development / Ed. A.J. Trewavas. Plenum Press. 1986. P. 285.
- Poovaiah B.W. Veluthambi K. The role of calcium and calmodulin in hormone action in plants: importance of protein phosphorylation, molecular and cellular aspects of calcium in plant development / Ed. A.J. Trewavas. Plenum Press. 1986. P. 83.
- Leitenmaier B., Küpper H. Compartmentation and complexation of metals in hyperaccumulator plants // Front. Plant Sci. 2013. V. 4: 374. https://doi.org/10.3389/fpls.2013.00374
- Adhikary T., Gill1 P.P.S., Jawandha S.K., Kaur N., Sinha A. Exogenous application of oxalic acid improves the storage quality of Asian pears (Patharnakh) by regulating physiological and biochemical changes // Acta Physiol. Plant. 2024. V. 46: 1. https://doi.org/10.1007/s11738-023-03624-6
- Erbas D. Effect of oxalic acid treatments and modified atmosphere packaging on the quality attributes of rocket leaves during different storage temperatures // Hortic. 2023. V. 9. P. 718. https://doi.org/10.3390/horticulturae9060718
- Chiriboga J. Purification and properties of oxalic acid oxidase // Arch. Bioch. Bioph. 1966. V. 116. P. 516. https://doi.org/10.1016/0003-9861(66)90057-9
- Lane B.G., Dunwell J.M., Rag J.A., Schmitt M.R., Cumin A.C. Germin, a protein marker of early plant development, is an oxalate oxidase // J. Biol. Chem. 1993. V. 268. P. 12239. https://doi.org/10.1016/S0021-9258(18)31377-2
- Lu M., Han Y.P., Gao J.G., Wang X.J., Li W.B. Identification and analysis of the germin-like gene family in soybean // BMC Genom. 2010. V. 11: 620. https://doi.org/10.1186/1471-2164-11-620
- Wang T., Chen X., Zhu F., Li H., Li L., Yang Q., Chi X., Yu Sh., Liang X. Characterization of peanut germin-like proteins, AhGLPs in plant development and defense // PLoS One. 2013. V. 8: e61722. https://doi.org/10.1371/journal.pone.0061722
- Dunwell J.M., Purvis A., Khuri S. Cupins: the most functionally diverse protein superfamily? // Phytochem. 2004. V. 65. P. 7. https://doi.org/10.1016/j.phytochem.2003.08.016
- Карпилов Ю.С., Кузьмин А.Н., Биль К.Я. Распределение ферментов гликолиза в ассимиляционных тканях листьев С4-растений и их связь с особенностями реакций фотосинтеза и фотодыхания // Физиология растений. 1978. Т. 25. С. 1120.
- Franceschi V. Calcium oxalate in plants // Trends Plant Sci. 2001. V. 6. P. 331. https://doi.org/10.1016/S1360-1385(01)02014-3
- Kuo-Huang L.L., Ku M.S.B., Franceschi V.R. Correlations between calcium oxalate crystals and photosynthetic activities in palisade cells of shade adapted Peperomia glabella // Bot. Stud. 2007. V. 48. P. 155.
- Trinchant J.C., Rigaud J. Bacteroid oxalate oxidase and soluble oxalate in nodules of faba beans (Vicia faba L.) submitted to water restricted conditions: possible involvement in nitrogen fixation // J. Exp. Bot. 1996. V. 4. P. 1865. https://doi.org/10.1093/jxb/47.12.1865
- Kost T., Stopnisek N., Agnoli K., Eberl L., Weisskopf L. Oxalotrophy, a widespread trait of plant-associated Burkholderia species, is involved in successful root colonization of lupin and maize by Burkholderia phytofirmans // Front. Microbiol. 2014. V. 4. P. 421. https://doi.org/10.3389/fmicb.2013.00421
- Suarez-Moreno Z.R., Caballero-Mellado J., Coutinho B.G., Mendonca-Previato L., James E.K., Venturi V. Common features of environmental and potentially beneficial plant-associated Burkholderia // Microb. Ecol. 2012. V. 63. P. 249. https://doi.org/10.1007/s00248-011-9929-1
- Jooste M., Roets F., Midgley G.F., Oberlander K.C., Dreyer L.L. Nitrogen-fixing bacteria and Oxalis – evidence for a vertically inherited bacterial symbiosis // BMC Plant Biol. 2019. V. 19. P. 441. https://doi.org/10.1186/s12870-019-2049-7
- Patnaik D., Khurana P. Germins and germin like proteins: an overview // Indian J. Exp. Biol. 2001. V. 39. P. 191. https://doi.org/10.1016/S0981-9428(01)01285-2
- He H., Veneklaas E.J., Kuo J., Lambers H. Physiological and ecological significance of biomineralization in plants // Trends Plant Sci. 2014. V. 19. P. 166. https://doi.org/10.1016/j.tplants.2013.11.002
- Schneider А. The probable function of calcium oxalate crystals in plants // Bot. Gaz. 1901. V. 32. P. 142.
- Naude T.W., Naidoo V. Oxalates-containing plants // Veterinary toxicology: basic and clinical principles / Ed. R.C. Gupta. Elsevier. 2007. P. 880.
- Gwaltney-Brant S.M. Oxalate-containing plants // Small animal toxicology / Eds. M.E. Peterson, P.A. Talcott. Elsevier. 2013. P. 725. https://doi.org/10.1016/B978-1-4557-0717-1.000 68-5
- Grigorieva L.A., Amosova L.I. Peculiarities of the peritrophic matrix in the midgut of tick females of the genus ixodes (Acarina: Ixodidae) // Parazitologiya. 2004. V. 38. P. 3. https://doi.org/10.1016/j.abb.2004.08.032
- Park S., Doege S.J., Nakata P.A., Korth K.L. Medicago truncatula-derived calcium oxalate crystals have a negative impact on chewing insect performance via their physical properties // Entomol. Exp. Appl. 2009. V. 131. P. 208. https://doi.org/10.1111/j.1570-7458.2009.00846.x
- Yoshida M., Cowgill S.E., Wightman J.A. Mechanism of resistance to Helicoverpa armigera (Lepidoptera, Noctuidae) in chickpea: role of oxalic acid in leaf exudate as an antibiotic factor // J. Econ. Entomol. 1995. V. 88. P. 1783. https://doi.org/10.1093/jee/88.6.1783
- Prasad P., Shivay Y.S. Oxalic acid/oxalates in plants: from self-defence to phytoremediation // Curr. Sci. V. 112. P. 1665. https://doi.org/10.18520/cs/v112/i08/1665-1667
- Nowakowska J. Gene expression and oxalate oxidase activity of two germin isoforms induced by stress // Acta Physiol. Plant. 1998. V. 20. P. 19. https://doi.org/10.1007/s11738-998-0039-8
- Bose J., Babourina O., Rengel Z. Role of magnesium in alleviation of aluminium toxicity in plants // J. Exp. Bot. 2011. V. 62. P. 2251. https://doi.org/10.1093/jxb/erq456
- He H., Bleby T.M., Veneklaas E.J., Lambers H., Kuo J. Precipitation of calcium, magnesium, strontium and barium in tissues of four Acacia species (Leguminosae: Mimosoideae) // PLoS One. 2012. V. 7: e41563. https://doi.org/10.1371/journal.pone.0041563
- Jauregui-Zuniga D., Ferrer M.A., Calderon A.A., Munoz R., Moreno A. Heavy metal stress reduces the deposition of calcium oxalate crystals in leaves of Phaseolus vulgaris // J. Plant Physiol. 2005. V. 162. P. 1183. https://doi.org/10.1016/j.jplph.2005.03.002
- Magro P., Marciano P., Di Lenna P. Oxalic acid production and its role in pathogenesis of Sclerotinia sclerotiorum // FEMS Microbiol. Lett. 1984. V. 24. P. 9. https://doi.org/10.1111/j.1574-6968.1984.tb01234.x
- Cessna S.G., Sears V.E., Dickman M.B., Low P.S. Oxalic acid, a pathogenicity factor for Sclerotinia sclerotiorum, suppresses the oxidative burst of the host plant // Plant Cell. 2000. V. 12. P. 2191. https://doi.org/10.1105/tpc.12.11.2191
- Guimaraes R.L., Stotz H.U. Oxalate production by Sclerotinia sclerotiorum deregulates guard cells during infection // Plant Physiol. 2004. V. 136. P. 3703. https://doi.org/10.1104/pp.104.049650
- Rao D.V. Occurrence of magnesium oxalate crystals on lesions incited by Mycena citricolor on coffee // Phytopathology. 1989. V. 79. P. 783. https://doi.org/10.1094/Phyto-79-783
- Zhang Z., Collinge D.B., Thordal-Christensen H. Germin-like oxalate oxidase, a H2O2-producing enzyme, accumulates in barley attacked by the powdery mildew fungus // Plant J. 1995. V. 8. P. 139. https://doi.org/10.1046/j.1365-313X.1995.08010139.x
- Thordal-Christensen H., Zhang Z., Wei Y., Collinge D.B. Subcellular localization of H2O2 in plants. H2O2 accumulation in papillae and hypersensitive response during the barley-powdery mildew interaction // Plant J. 1997. V. 11. P. 1187. https://doi.org/10.1046/j.1365-313X.1997.11061187.x
- Donaldson P.A., Anderson T., Lane B.G., Davidson A.L., Simmonds D.H. Soybean plants expressing an active oligomeric oxalate oxidase from the wheat gf-2.8 (germin) gene are resistant to the oxalate-secreting pathogen Sclerotinia sclerotiorum // Physiol. Mol. Plant Pathol. 2001. V. 59. P. 297. https://doi.org/10.1006/pmpp.2001.0369
- Han Y., Joosten H.J., Niu W., Zhao Z., Mariano P.S., McCalman M., van Kan J., Schaap P.J., Dunaway-Mariano D. Oxaloacetate hydrolase, the C-C bond lyase of oxalate secreting fungi // J. Biol. Chem. 2007. V. 282. P. 9581. https://doi.org/10.1074/jbc.M608961200
- Watanabe T., Shitan N., Suzuki S., Umezawa T., Shimada M., Yazaki K., Hattori T. Oxalate efflux transporter from the brown rot fungus Fomitopsis palustris // Appl. Env. Microbiol. 2010. V. 76. P. 7683. https://doi.org/10.1128/AEM.00829-10
- Urzua U., Kersten P.J., Vicuna R. Manganese peroxidase-dependent oxidation of glyoxylic and oxalic acids synthesized by produces extracellular hydrogen peroxide // Appl. Environ. Microbiol. 1998. V. 64. P. 68. https://doi.org/10.1128/AEM.64.1.68-73.1998
- Johansson E.M., Fransson P.M.A., Finlay R.D., van Hees P.A.W. Quantitative analysis of exudates from soil-living basidiomycetes in pure culture as a response to lead, cadmium and arsenic stress // Soil Biol. Biochem. 2008. V. 40. P. 2225. https://doi.org/10.1016/j.soilbio.2008.04.016
- Gadd G.M., Bahri-Esfahani J., Li Q., Rhee Y.J., Wei Z., Fomina M., Liang X. Oxalate production by fungi: significance in geomycology, biodeterioration and bioremediation // Fungal Biol. Rev. 2014. V. 28. P. 36. https://doi.org/10.1016/j.fbr.2014.05.001
- Cromack J.K., Solkins P., Grausten W.C., Speidel K., Todd A.W., Spycher G., Li C.Y., Todd R.L. Calcium oxalate accumulation and soil weathering in mats of the hypogeous fungus Hysterangium crissum // Soil Biol. Bioch. 1979. V. 11. P. 463. https://doi.org/10.1016/0038-0717(79)90003-8
- Gharieb M.M., Sayer J.A., Gadd G.M. Solubilization of natural gypsum (CaSO4×2H2O) and the formation of calcium oxalate by Aspergillus niger and Serpula himantioides // Mycol. Res. 1998. V. 102. P. 825. https://doi.org/10.1017/S0953756297005510
- Verrecchia E.P., Braissant O., Cailleau G. The oxalate-carbonate pathway in soil carbon storage: the role of fungi and oxalotrophic bacteria // Fungi in Biogeochemical Cycles. Chapter 12 / Ed. G.M. Gadd. Cambridge University Press. 2006. P. 289. https://doi.org/10.1017/CBO9780511550522.013
- Cailleau G., Braissant O., Verrecchia E.P. Turning sunlight into stone: the oxalate-carbonate pathway in a tropical tree ecosystem // Biogeosciences. 2011. V. 8. P. 1077. https://doi.org/10.5194/bgd-8-1077-2011
- Sessitsch A., Coenye T., Sturz A.V., Vandamme P., Barka E.A., Salles J.F., Van Elsas J.D., Faure D., Reiter B., Glick B.R., Wang-Pruski G., Nowak J. Burkholderia phytofirmans sp. nov., a novel plant-associated bacterium with plant-beneficial properties // Int. J. Syst. Evol. Microbiol. 2005. V. 55. P. 1187. https://doi.org/10.1099/ijs.0.63149-0
- Belles-Sancho P., Beukes C., James E.K., Pessi G. Nitrogen-fixing symbiotic Paraburkholderia species: current knowledge and future perspectives // Nitrogen. 2023. V. 4: 135. https://doi.org/10.3390/nitrogen4010010
- Ghate S.D., Shastry R.P., Rekha P.D. Rapid detection of oxalotrophic endophytic bacteria by colony PCR from Colocasia esculenta and Remusatia vivipara // Ecol. Genet. Genom. 2021. V. 21: 100102. https://doi.org/10.1016/j.egg.2021.100102
- Carper D.L., Carrell A.A., Kueppers L.M., Frank A.C. Bacterial endophyte communities in Pinus flexilis are structured by host age, tissue type, and environmental factors // Plant Soil. 2018. V. 428. P. 335. https://doi.org/10.1007/s11104-018-3682-x
- DeLeon-Rodrigueza N., Lathemb T.L., Rodriguez-R L.M., Barazeshc J.M., Andersond B.E., Beyersdorf A.J., Ziemba L.D., Bergin M., Nenes A., Konstantinidis K.T. Microbiome of the upper troposphere: species composition and prevalence, effects of tropical storms, and atmospheric implications // Proc. Natl. Acad. Sci. USA. 2013. V. 110. P. 2575. https://doi.org/10.1073/pnas.1212089110
- Ofek M., Hadar Y., Minz D. Ecology of root colonizing Massilia (Oxalobacteraceae) // PLoS One. 2012. V. 7: e40117. https://doi.org/10.1371/journal.pone.0040117
- Kumar K., Belur P.D. Production of oxalate oxidase from endophytic Ochrobactrum intermedium CL6 // J. Pure Appl. Microbiol. 2018. V. 12. P. 2327. https://doi.org/10.22207/JPAM.12.4.75
- Silva U.S., Cuadros-Orellana S., Silva D.R.C., Freitas-Junior L.F., Fernandes A.C., Leite L.R., Oliveira C.A., Dos Santos V.L. Genomic and phenotypic insights into the potential of rock phosphate solubilizing bacteria to promote millet growth in vivo // Front. Microbiol. 2020. V. 11: 574550. https://doi.org/10.3389/fmicb. 2020.574550
- Graz M., Rachwal K., Zan R., Jarosz-Wilkolazka A. Oxalic acid degradation by a novel fungal oxalate oxidase from Abortiporus biennis // Acta Bioch. Polonica. 2016. V. 63. P. 595. http://dx.doi.org/10.18388/abp.2016_1282
- Don Cowan A., Babenko D., Bird R., Botha A., Breecker D.O., Clarke C.E., Francis M.L., Gallagher T., Lebre P.H., Nel T., Potts A.J., Trindade M., Van Zyl L. Oxalate and oxalotrophy: an environmental perspective // Sustainable Microbiol. 2024. V. 1: qvad004. https://doi.org/10.1093/sumbio/qvad004
- Tanner A., Bowater L., Fairhurst S.A., Bornemann S. Oxalate decarboxylase requires manganese and dioxygen for activity: overexpression and characterization of Bacillus subtilis YvrK and YoaN // J. Biol. Chem. 2001. V. 276. P. 43627. https://doi.org/10.1074/jbc.m107202200
- Svedruzic D., Jonsson S., Toyota C.G., Reinhardt L.A., Ricagnoc S., Lindqvist Y., Richards N.G. The enzymes of oxalate metabolism: unexpected structures and mechanisms // Arch. Biochem. Biophys. 2005. V. 433. P. 176. https://doi.org/10.1016/j.abb.2004.08.032
- Schneider K., Skovran E., Vorholta J.A. Oxalyl-coenzyme a reduction to glyoxylate is the preferred route of oxalate assimilation in Methylobacterium extorquens AM1 // J. Bacteriol. 2012. V. 194. P. 3144. https://doi.org/10.1128/jb.00288-12
- Ensign S.A. Revisiting the glyoxylate cycle: alternate pathways for microbial acetate assimilation // Mol. Microbiol. 2006. V. 61. P. 274. https://doi.org/10.1111/j.1365-2958.2006.052 47.x
- Sahin N. Isolation and characterization of a diazotrophic, oxalate-oxidizing bacterium from sour grass (Oxalis pes-caprae L.) // Res. Microbiol. 2005. V. 156. P. 452. https://doi.org/10.1016/j.resmic.2004.10.009
- Robertson C.F.M., Meyers P.R. Oxalate utilisation is widespread in the actinobacterial genus Kribbella // Syst. Appl. Microbiol. 2022. V. 45: 126373. https://doi.org/10.1016/j.syapm.2022.126373
- Kumar V., Irfan M., Datta A. Manipulation of oxalate metabolism in plants for improving food quality and productivity // Phytochem. 2019. V. 158. P. 103. https://doi.org/10.1016/j.phytochem.2018.10.029
- Goldsmith M., Barad S., Peleg Y., Albeck S., Dym O., Brandis A., Mehlman T., Reich Z. The identification and characterization of an oxalyl-CoA synthetase from grass pea (Lathyrus sativus L.) // RSC Chem. Biol. 2022. V. 3. P. 320. https://doi.org/10.1039/D1CB00202C
- Foster J., Kim H.U., Nakata P.A., Browse J. A previously unknown oxalyl-CoA synthetase is important for oxalate catabolism in Arabidopsis // Plant Cell. 2012. V. 24. P. 1217. https://doi.org/10.1105/tpc.112.096032
- Da Silva L.F., Dias C.V., Cidade L.C., Mendes J.S., Pirovani C.P., Alvim F.C., Pereira G.A., Aragão F.J., Cascardo J.C., Costa M.G. Expression of an oxalate decarboxylase impairs the necrotic effect induced by nep1-like protein (nlp) of Moniliophthora perniciosa in transgenic tobacco // Mol. Plant Microbe Interact. 2011. V. 24. P. 839. https://doi.org/10.1094/MPMI-12-10-0286
- Marina M., Romero F.M., Villarreal N.M., Medina A.J., Gárriz A., Rossi F.R., Martinez G.A., Pieckenstain F.L. Mechanisms of plant protection against two oxalate-producing fungal pathogens by oxalotrophic strains of Stenotrophomonas spp. // Plant Mol. Biol. 2019. V. 100. P. 659. https://doi.org/10.1007/s11103-019-00888-w
- Schoonbeek H.J., Jacquat-Bovet A.C., Mascher F., Metraux J.P. Oxalate-degrading bacteria can protect Arabidopsis thaliana and crop plants against Botrytis cinerea // Mol. Plant Microbe Interact. 2007. V. 20. P. 1535. https://doi.org/10.1094/MPMI-20-12-1535
- Lee Y., Choi O., Kang B., Bae J., Kim S., Kim J. Grey mould control by oxalate degradation using non-antifungal Pseudomonas abietaniphila strain ODB36 // Sci. Rep. 2020. V. 10: 1605. https://doi.org/10.1038/s41598-020-58609-z
- Saucedo-Bazalar M., Masias P., Nouchi-Moromizato E., Santos C., Mialhe E., Cedeño V. MALDI mass spectrometry-based identification of antifungal molecules from endophytic Bacillus strains with biocontrol potential of Lasiodiplodia theobromae, a grapevine trunk pathogen in Peru // Curr. Res. Microb. Sci. 2023. V. 5: 100201. https://doi.org/10.1016/j.crmicr.2023.100201
- Yu Y.Y., Si F.J., Wang N., Wang T., Jin Y., Zheng Y., Yang W., Luo Y.M., Niu D.D., Guo J.H., Jiang C.H. Bacillus-secreted oxalic acid induces tomato resistance against gray mold disease caused by Botrytis cinerea by activating the JA/ET pathway // Mol. Plant Microbe Interact. 2022. V. 35. P. 659. https://doi. org/10.1094/MPMI-11-21-0289-R
- Tufail M.A., Ayyub M., Irfan M., Shakoor A., Chibani C.M., Schmitz R.A. Endophytic bacteria perform better than endophytic fungi in improving plant growth under drought stress: a meta-comparison spanning 12 years (2010-2021) // Physiol. Plant. 2022. V. 174: e13806. https://doi.org/10.1111/ppl.13806
- Wang X., Liu Y., Qing C., Zeng J., Dong J., Xia P. Analysis of diversity and function of epiphytic bacterial communities associated with macrophytes using a metagenomic approach // Microb. Ecol. 2024. V. 87: 37. https://doi.org/10.1007/s00248-024-02346-7
- Yu P., He X., Baer M., Beirinckx S., Tian T., Moya Y.A.T., Zhang X., Deichmann M., Frey F.P., Bresgen V., Li C., Razavi B.S., Schaaf G., von Wirén N., Su Z. et al. Plant flavones enrich rhizosphere Oxalobacteraceae to improve maize performance under nitrogen deprivation // Nat. Plants. 2021. V. 7. P. 481. https://doi.org/10.1038/s41477-021-00897-y
- Lang E., Schumann P., Adler S., Sproer C., Sahin N. Azorhizobium oxalatiphilum sp. nov., and emended description of the genus Azorhizobium // Int. J. Syst. Evol. Microbiol. 2013. V. 63. P. 1505. https://doi.org/10.1099/ijs.0.045229-0
- Busato J.G., Lima L.S., Aguiar N.O., Canellas L.P., Olivares F.L. Changes in labile phosphorus forms during maturation of vermicompost enriched with phosphorus-solubilizing and diazotrophic bacteria // Bioresour. Technol. 2012. V. 110. P. 390. https://doi.org/10.1016/j.biortech.2012.01.126
- Andrino A., Guggenberger G., Kernchen S., Mikutta R., Sauheitl L., Boy J. Production of organic acids by arbuscular mycorrhizal fungi and their contribution in the mobilization of phosphorus bound to iron oxides // Front. Plant Sci. 2021. V. 12: 661842. https://doi.org/10.3389/fpls.2021.661842
- Haq I.U., Zwahlen R.D., Yang P., van Elsas J.D. The response of Paraburkholderia terrae strains to two soil fungi and the potential role of oxalate // Front. Microbiol. 2018. V. 9: 989. https://doi.org/10.3389/fmicb.2018.00989
- Macias-Benitez S., Garcia-Martinez A.M., Jimenez P.C., Gonzalez J.M., Moral M.T., Parrado Rubio J. Rhizospheric organic acids as biostimulants: monitoring feedbacks on soil microorganisms and biochemical properties // Front. Plant Sci. 2020. V. 11: 633. https://doi.org/10.3389/fpls.2020.00633
- Kirkland B.H., Eisa A., Keyhani N.O. Oxalic acid as a fungal acaracidal virulence factor // J. Med. Entomol. 2005. V. 42. P. 346. https://doi.org/10.1093/jmedent/42.3.346
- Devi K.A., Pandey P., Sharma G.D. Plant growth-promoting endophyte Serratia marcescens AL2-16 enhances the growth of Achyranthes aspera L., a medicinal plant // HAYATI J. Biosci. 2016. V. 23: 173. https://doi.org/10.1016/j.hjb.2016.12.006
- Maksimov I.V., Maksimova T.I., Sarvarova E.R., Blagova D.K., Popov V.O. Endophytic bacteria as effective agents of new-generation biopesticides // Appl. Biochem. Microbiol. 2018. V. 54. P. 128. https://doi.org/10.1134/S0003683818020072
- Bulgarelli D., Schlaeppi K., Spaepen S., van Themaat E.V.L., Schulze-Lefert P. Structure and functions of the bacterial microbiota of plants // Ann. Rev. Plant Biol. 2013. V. 64. P. 807. https://doi.org/10.1146/annurev-arplant-050312-120106
- Chen N., Tian Sh., Wang F., Shi P., Liu L., Xiao M., Liu E., Tang W., Rahman M., Somos-Valenzuela M. Multi-wing butterfly effects on catastrophic rockslides // Geosci. Front. 2023. V. 14: 101627. https://doi.org/10.1016/j.gsf.2023.101627
Supplementary files
