Генетическая инженерия как методологическая основа функциональной геномики растений
- Authors: Фадеев В.С.1
-
Affiliations:
- Федеральное государственное бюджетное учреждение науки Институт физиологии растений им. К.А. Тимирязева Российской академии наук
- Issue: Vol 71, No 5 (2024): Генетическая инженерия растений – достижения и перспективы
- Pages: 555-568
- Section: ОБЗОРЫ
- URL: https://journals.rcsi.science/0015-3303/article/view/269465
- DOI: https://doi.org/10.31857/S0015330324050051
- EDN: https://elibrary.ru/MMXBEC
- ID: 269465
Cite item
Abstract
Функциональная геномика изучает динамические аспекты экспрессии генов и геномов, тонкие механизмы транскрипции и трансляции, а также межбелковые взаимодействия компонентов, участников этих процессов. Генетическая инженерия включает в себя комплекс знаний и разработанных методик, позволяющих экспериментально исследовать физиологическую роль генных продуктов, что является одной из задач функциональной геномики. Комплексные исследования, связанные с изучением функционирования генома, требуют анализа большого объема данных. В данном случае используют алгоритмы биоинформатики – междисциплинарной области, объединяющей комплекс наук и компьютерных технологий. В настоящем обзоре рассмотрены комбинированные методологические приемы, используемые в современной генной инженерии по изучению физиологической роли генов на моделях стабильных трансформантов растений. Наибольшее внимание уделено инсерционному мутагенезу и РНК-интерференции, а также их применению в свете изучения тонких механизмов ключевых биологических процессов.
Full Text

About the authors
В. С. Фадеев
Федеральное государственное бюджетное учреждение науки Институт физиологии растений им. К.А. Тимирязева Российской академии наук
Author for correspondence.
Email: fadeevvs@gmail.com
Russian Federation, Москва
References
- Wang Z., Gerstein M., Snyder M. RNA-Seq: a revolutionary tool for transcriptomics // Nat. Rev. Genet. J. 2009. V. 1. P. 5763. https:doi.org/10.1038/nrg2484
- Anders S., Huber W. Differential expression analysis for sequence count data // BioMed Central J. 2010. V. 11: R106. https:doi.org/10.1186/gb-2010-11-10-r106
- Quail M.A., Smith M., Coupland P., Otto T.D., Harris S.R., Connor T.R., Bertoni A., Swerdlow H.P., Gu Y. A tale of three next generation sequencing platforms: comparison of ion torrent, pacific biosciences and illumina MiSeq sequencers // BMC Genom. 2012. V.13. № 341. https:doi.org/10.1186/1471-2164-13-341
- Stander E.A., Sepulveda L.J., Duge de Bernonville T., Carqueijeiro I., Koudounas K., Lemos Cruz P., Besseau S., Lanoue A., Papon N., Giglioli-Guivarch N., Dirks R., O’Connor S.E., Atehortua L., Oudin A., Courdavault V. Identifying genes involved in alkaloid biosynthesis in Vinca minor through transcriptomic and gene co-expression analysis // Biomolecules. 2020. V. 10: 1595. https:doi.org/10.3390/biom10121595
- Medema M.H., Osbourn A. Computational genomic identification and functional reconstitution of plant natural product biosynthetic pathways // Nat. Prod. Rep. 2016. V. 33. P. 951. https:doi.org/10.1039/c6np00035e
- Alonso-Blanco C., Andrade J., Becker C., Bemm F., Bergelson J. Borgwardt K.M., Cao J., Chae E., Dezwaan T.M., Ding W., Ecker J.R., Exposito-Alonso M., Farlow A., Fitz J., Gan X. et al. The 1001 Genomes Consortium. 1,135 genomes reveal the global pattern of polymorphism in Arabidopsis thaliana // Cell. 2016. V. 166. P. 481. https:doi.org/10.1016/j.cell.2016.05.063
- Baird N.A., Etter P.D., Atwood T.S., Currey M.C., Shiver A.L., Lewis Z.A., Selker E.U., Cresko W.A., Johnson E.A. Rapid SNP discovery and genetic mapping using sequenced RAD markers // PLoS ONE. 2008. V. 3: e3376. https:doi.org/10.1371/journal.pone.0003376
- Rowan B.A., Patel V., Weigel D., Schneeberger K. Rapid and inexpensive whole-genome genotyping-by-sequencing for crossover localization and fine-scale genetic mapping // G3: Genes, Genomes, Genetics. 2015. V. 5. P. 385. https:doi.org/10.1534/g3.114.016501
- Pisupati R., Reichardt I., Seren Ü., Korte P., Nizhynska V., Kerdaffrec E., Uzunova K., Rabanal F.A., Filiault D.L., Nordborg M. Verification of Arabidopsis stock collections using SNPmatch, a tool for genotyping high-plexed samples // Nature. 2017. V. 19: 170184. https:doi.org/10.1038/sdata.2017.184
- Chavali A.K., Rhee S.Y. Bioinformatics tools for the identification of gene clusters that biosynthesize specialized metabolites // Brief. Bioinform. 2018. V. 19. P. 1022. https:doi.org/10.1093/bib/bbx020
- Medema M.H., Kottmann R., Yilmaz P., Cummings M., Biggins J.B., Blin K., de Bruijn I., Chooi Y.H., Claesen J., Coates R.C., Cruz-Morales P., Duddela S., Düsterhus S., Edwards D.J, Fewer D.P. et al. Minimum information about a biosynthetic gene cluster // Nat. Chem. Biol. 2015. V. 11. P. 625. https:doi.org/10.1038/nchembio.1890
- Kautsar S.A., Duran H.G.S., Blin K., Osbourn A., Medema M.H. PlantiSMASH: automated identification, annotation and expression analysis of plant biosynthetic gene clusters // Nucleic Acids Res. 2017. V. 45. P. 55. https:doi.org/10.1093/nar/gkx305
- Schlapfer P., Zhang P., Wang C., Kim T., Banf M., Chae L., Dreher K., Chavali A.K., Nilo-Poyanco R., Bernard T., Kahn D., Rheeal S.Y. Genome-wide prediction of metabolic enzymes, pathways, and gene clusters in plants // Plant Physiol. 2017. V. 173. P. 2041. https:doi.org/10.1104/pp.16.01942
- Topfer N., Fuchs L. M., Aharoni A. The PhytoClust tool for metabolic gene clusters discovery in plant genomes // Nucleic Acids Res. 2017. V. 45. P. 7049. https:doi.org/10.1093/nar/gkx404
- Marton L., Wullems G. J., Molendijk L., Schilperoort R. A. In vitro transformation of cultured cells from Nicotiana tabacum by Agrobacterium tumefaciens // Nature. 1979. V. 277. P. 129. https:doi.org/10.1038/277129a0
- Herrera-Estrella L., Depicker A., Van Montagu M., Schell J. Expression of chimeric genes transferred into plant cells using a Ti-plasmid-derived vector // Nature. 1983. V. 303. P. 209. https:doi.org/10.1038/303209a0. S2CID 4330119
- Azria D., Bhalla P.L. Agrobacterium mediated transformation of Australian rice varieties and promoter analysis of major pollen allergen gene Orys1 // Plant Cell Rep. 2011. V. 30. P. 1673. https:doi.org/10.1007/s00299-011-1076-0
- Liu H., Xie X., Sun S., Zhu W., Ji J., Wang G. Optimization of Agrobacterium mediated transformation of sunflower Helianthus annuus L. immature embryos // AJCS. 2011. V. 5. P. 1616.
- Ziemienowicz A., Shim Y.S., Matsuoka A., Eudes F., Kovalchuk I. A novel method of transgene delivery into triticale plants using the Agrobacterium T-DNA derived nanocomplex // ASPB. 2012. P. 111. https:doi.org/10.1104/pp.111.192856
- Klein T.M., Wolf B.D., Wu R., Sanford J.C. High-velocity microprojectiles for delivering nucleic acids into living cells // Nature. 1987. V. 327. P. 70.
- Fadeev V.S., Blinkova O.V., Gaponenko A.K. Optimization of biological and physical parameters for biolistic genetic transformation of common wheat (Triticum aestivum L.) using a particle inflow gun // Russ. J. Genet. 2006. V. 42. P. 402.
- Fadeev V.S., Shimshilashvili Kh.R., Gaponenko A.K. Induction, regeneration, and biolistic sensitivity of different genotypes of common wheat (Triticum aestivum L.) // Russ. J. Genet. 2008. V. 44. P. 1257.
- Fire A., Xu S., Montgomery M.K., Kostas S.A., Driver S.E., Mello C.C. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans // Nature. 1998. V. 391. P. 806. https:doi.org/10.1038/35888
- Jackson A.L., Bartz S.R., Schelter J., Kobayashi S.V., Burchard J., Mao M., Li B., Cavet G., Linsley P.S. Expression profiling reveals off-target gene regulation by RNAi // Nat. Biotechnol. 2003. V. 21. P. 635. https:doi.org/10.1038/nbt831
- Birmingham A., Anderson E.M., Reynolds A., Ilsley-Tyree D., Leake D., Fedorov Y., Baskerville S., Maksimova E., Robinson K., Karpilow J., Marshall W.S., Khvorova A. 3’ UTR seed matches, but not overall identity, are associated with RNAi off-targets // Nat. Methods. 2006. V. 3. P. 199. https:doi.org/10.1038/nmeth854
- Huesken D., Lange J., Mickanin C., Weiler J., Asselbergs F., Warner J., Meloon B., Engel S., Rosenberg A., Cohen D., Labow M., Reinhardt M., Natt F., Hall J. Design of a genome-wide siRNA library using an artificial neural network // Nat. Biotechnol. 2005. V. 23. P. 995. https:doi.org/10.1038/nbt1118
- Ge G., Wong G., Luo B. Prediction of siRNA knockdown efficiency using artificial neural network models // Biochem. Biophys. Res. Commun. 2005. V. 336. P. 723. https:doi.org/10.1016/j.bbrc.2005.08.147
- Moffat J., Grueneberg D.A., Yang X., Kim S.Y., Kloepfer A.M., Hinkle G., Piqani B., Eisenhaure T.M., Luo B., Grenier J.K., Carpenter A.E., Foo S.Y., Stewart S.A., Stockwell B.R., Hacohen N. et al. A lentiviral RNAi library for human and mouse genes applied to an arrayed viral high-content screen // Cell. 2006. V. 124. P. 1283. https:doi.org/10.1016/j.cell.2006.01.040
- Waterhouse P.M., Wang M.B., Lough T. Gene silencing as an adaptive defense against viruses // Nature. 2001. V. 411. P. 834. https:doi.org/10.1038/35081168
- Voinnet O., Baulcombe D.C. Systemic signaling in gene silencing // Nature. 1997. V. 389. P. 553. https:doi.org/10.1038/39215
- Imlau A., Truernit E., Sauer N. Cell-to-cell and long distance trafficking of the green fluorescent protein in the phloem and symplastic unloading of the protein into sink tissues // Plant Cell. 1999. V. 11. P. 309. https:doi.org/10.1105/tpc.11.3.309
- Smith L.M., Pontes O., Searle L., Yelina N., Yousafzai F.K., Herr A.J., Pikaard C.S., Baulcombe D.C. An SNF2 protein associated with nuclear RNA silencing and the spread of a silencing signal between cells in Arabidopsis // Plant Cell. 2007. V. 19. P. 1507. https:doi.org/10.1105/tpc.107.051540
- Melnyk C.W., Molnar A., Baulcombe D.C. Intercellular and systemic movement of RNA silencing signals // EMBO J. 2011. V. 30. P. 3553. https:doi.org/10.1038/emboj.2011.274
- Zhao K., Zhang F., Yang Y., Ma Y., Liu Y., Li H., Zhang Z. Modification of plant height via RNAi suppression of MdGA20-ox gene expression in apple // J. Am. Soc. Hortic. Sci. 2016. V. 141. P. 242. https:doi.org/10.21273/JASHS.141.3.242
- Wenjing C., Shuangqin Y., Yun T., Hu M., Yongzhong W., Yingwu Y. SlCAND1, encoding cullin-associated Nedd8-dissociated protein 1, regulates plant height, flowering time, seed germination, and root architecture in tomato // Plant Mol. Biol. 2020. V. 102. P. 537. https:doi.org/10.1007/s11103-020-00963-7
- Flavell R.B., Bennett M.D., Smith J.B., Smith D.B. Genome size and proportion of repeated nucleotide sequence DNA in plants // Biochem. Genet. 1974. V. 12. P. 257. https:doi.org/10.1007/BF00485947
- Travella S., Klimm T., Keller B. RNA interference-based gene silencing as an efficient tool for functional genomics in hexaploid bread wheat // Plant Physiol. 2006. V. 142. P. 6. https:doi.org/10.1104/pp.106.084517
- Bartley G.E., Scolnik P.A. Plant carotenoids: pigments for photo-protection, visual attraction, and human health // Plant Cell. 1995. V. 7. P. 1027. https:doi.org/10.1105/tpc.7.7.1027
- Shimatani Z., Nishizawa-Yokoi A., Endo M., Toki S., Terada R. Positive–negative-selection-mediated gene targeting in rice // Front. Plant Sci. 2015. V. 5. P. 748. https:doi.org/10.3389/fpls.2014.00748
- Nester E.W. Agrobacterium: nature’s genetic engineer // Front. Plant Sci. 2015. V. 5. P. 730. https:doi.org/10.3389/fpls.2014.00730
- Jeon J.S, Lee S., Jung K.H., Jun S.H., Jeong D.H., Lee J., Kim C., Jang S., Lee S., Yang K. T-DNA insertional mutagenesis for functional genomics in rice // Plant J. 2000. V. 22. Р. 561. https:doi.org/10.1046/j.1365-313x.2000.00767.x
- Sallaud C., Meynard D., Boxtel J., Gay C., Bes M., Brizard J.P., Larmande P., Ortega D., Raynal M., Portefaix M., Ouwerkerk P.B.F., Rueb S., Delseny M., Guiderdoni E. Highly efficient production and characterization of T-DNA plants for rice (Oryza sativa L.) functional genomics // Theor. Appl. Genet. 2003. V. 106. P. 1396. https:doi.org/10.1007/s00122-002-1184-x
- Sallaud C., Gay C., Larmande P., Bès M., Piffanelli P., Piégu B., Droc G., Regad F., Bourgeois E., Meynard D. High throughput T-DNA insertion mutagenesis in rice: a first step towards in silico reverse genetics // Plant J. 2004. V. 39. Р. 450. https:doi.org/10.1111/j.1365-313X.2004.02145.x
- O’Malley R.C., Barragan C.C., Ecker J.R. A user’s guide to the Arabidopsis T-DNA insertion mutant collections // Methods Mol. Biol. 2015. V. 1284. Р. 323. https:doi.org/10.1007/978-1-4939-2444-8_16
- Pucker B., Kleinbölting N., Weisshaar B. Large scale genomic rearrangements in selected Arabidopsis thaliana T-DNA lines are caused by T-DNA insertion mutagenesis // BMC Genom. 2021. V. 22. Р. 599. https:doi.org/10.1186/s12864-021-07877-8
- Sasaki A., Yamaji N., Yokosho K., Ma J.F. Nramp5 Is a major transporter responsible for manganese and cadmium uptake in rice // Plant Cell. 2012. V. 24. P. 2155. https:doi.org/10.1105/tpc.112.096925
- Sun Q, Zhou D.X. Rice jmjC domain-containing gene JMJ706 encodes H3K9 demethylase required for floral organ development // Proc. Natl. Acad. Sci. USA. 2008. V. 105. P. 13679. https:doi.org/10.1073/pnas.0805901105
- Gao Y., Zhao Y. Epigenetic suppression of T-DNA insertion mutants in Arabidopsis // Mol. Plant. 2013. V. 6. P. 539. https:doi.org/10.1093/mp/sss093
- Xin Y., Meng S., Ma B., He W., He N. Mulberry genes MnANR and MnLAR confer transgenic plants with resistance to Botrytis cinerea // Plant Sci. 2020. V. 296: 110473. https:doi.org/10.1016/j.plantsci.2020.110473
- Nesi N., Jond C., Debeaujon I., Caboche M., Lepiniec L. The Arabidopsis TT2 gene encodes an R2R3 MYB domain protein that acts as a key determinant for proanthocyanidin accumulation in developing seed // Plant Cell. 2001. V. 13. P. 2099. https:doi.org/10.1105/tpc.010098
- Zhu Y., Peng Q.Z., Li K.G., Xie D.Y. Molecular cloning and functional characterization of the anthocyanidin reductase gene from Vitis bellula // Planta. 2014. V. 240. P. 381. https:doi.org/10.1007/s00425-014-2094-2
- Wang L., Jiang Y., Yuan L., Lu W., Yang L., Karim A., Luo K. Isolation and characterization of cDNAs encoding leucoanthocyanidin reductase and anthocyanidin reductase from Populus trichocarpa // PLoS One. 2013. V. 8: e64664. https:doi.org/10.1371/journal.pone.0064664
- Baulcombe D. RNA silencing in plants // Nature. 2004. V. 431. P. 356. https:doi.org/10.1038/nature02874
- Hanada K., Kuromori T., Myouga F., Toyoda T., Li W.H., Shinozaki K. Evolutionary persistence of functional compensation by duplicate genes in Arabidopsis // Genome Biol. Evol. 2009. V. 1. P. 409. https:doi.org/10.1093/gbe/evp043
- Hanada K., Sawada Y., Kuromori T., Klausnitzer R., Saito K., Toyoda T., Shinozaki K., Li W.H., Hirai M.Y. Functional compensation of primary and secondary metabolites by duplicate genes in Arabidopsis thaliana // Mol. Biol. Evol. 2011. V. 28. P. 377. https:doi.org/10.1093/molbev/msq204
- Ezoe A., Shirai K., Hanada K. Degree of functional divergence in duplicates is associated with distinct roles in plant evolution // Mol. Biol. Evol. 2021. V. 38. P. 1447. https:doi.org/10.1093/molbev/msaa302
- Takeda T., Ezoe A., Hanada K. Expression profiles in knock-down transgenic plants of high and low diversified duplicate genes in Arabidopsis thaliana // Genes Genet. Syst. 2023. V. 98. P. 283. https:doi.org/10.1266/ggs.23-00019
- Gout J.F., Kahn D., Duret L., & Paramecium Post-Genomics Consortium. The relationship among gene expression, the evolution of gene dosage, and the rate of protein evolution // PLoS Genet. 2010. V. 6: e1000944. https:doi.org/10.1371/journal.pgen.1000944
- Huang S., Li R., Zhang Z., Li L., Gu X., Fan W., Lucas W.J., Wang X., Xie B., Ni P., Ren Y., Zhu H., Li J., Lin K., Jin W. et al. The genome of the cucumber, Cucumis sativus L. // Nat. Genet. 2009. V. 41. P. 1275. https:doi.org/10.1038/ng.475
- Chai L., Fan H.F., Liu C., Du C.X. Progress of transgenic cucumber mediated by Agrobacterium tumefaciens // Trends Hortic. 2020. V. 3. P. 93. https:doi.org/10.24294/th.v3i1.1791
- Pan Y., Wang Y., McGregor C., Liu S., Luan F., Gao M., Weng Y. Genetic architecture of fruit size and shape variation in cucurbits: a comparative perspective // Theor. Appl. Genet. 2020. V. 133. P. 1. https:doi.org/10.1007/s00122-019-03481-3
- Pan Y., Wen C., Han Y., Wang Y., Li Y., Li S., Cheng X., Weng Y. QTL for horticulturally important traits associated with pleiotropic andromonoecy and carpel number loci, and a paracentric inversion in cucumber // Theor. Appl. Genet. 2020. V. 133. P. 2271. https:doi.org/10.1007/s00122-020-03596-y
- Wang Y., Bo K., Gu X., Pan J., Li Y., Chen J., Wen C., Ren Z., Ren H., Chen X. Molecularly tagged genes and quantitative trait loci in cucumber with recommendations for QTL nomenclature // Hortic. Res. 2020. V. 7: 3. https:doi.org/10.1038/s41438-019-0226-3
- Gebretsadik K., Qiu X., Dong S., Miao H., Bo K. Molecular research progress and improvement approach of fruit quality traits in cucumber // Theor. Appl. Genet. 2021. V. 134. P. 3535. https:doi.org/10.1007/s00122-021-03895-y
- Ma L., Wang Q., Zheng Y., Guo J., Yuan S., Fu A., Bai C., Zhao X., Zheng S., Wen C. Cucurbitaceae genome evolution, gene function, and molecular breeding // Hortic. Res. 2022. V. 9: uhab057. https:doi.org/ 10.1093/hr/uhab057
- Feng L.L., Wang X.Y., Xia L., Wang T.T., Li J., Chen J.F. Construction and rapid identification of cucumber T-DNA insertion mutants using GFP gene // J. Nucl. Agric. Sci. 2021. V. 35 P. 1540. https:doi.org/10.11869/j.issn.100-8551.2021.07.1540
- Miyao A., Nakagome M., Ohnuma T., Yamagata H., Kanamori H., Katayose Y., Takahashi A., Matsumoto T., Hirochika H. Molecular spectrum of somaclonal variation in regenerated rice revealed by whole-genome sequencing // Plant Cell Physiol. 2012. V. 53. P. 256. https:doi.org/10.1093/pcp/pcr172
- Hu C.A., Delauney A.J., Verma D.P. A bifunctional enzyme (Δ1-pyrroline-5-carboxylate synthetase) catalyzes the first two steps in proline biosynthesis in plants // Proc. Natl. Acad. Sci. USA. 1992. V. 89. P. 9354. https:doi.org/10.1073/pnas.89.19.9354
- Dahal P., Kwon E., Pathak D., Kim D.Y. Crystal structure of a tandem B-box domain from Arabidopsis CONSTANS // Biochem. Biophys. Res. Commun. 2022. V. 599. P. 38. https:doi.org/10.1016/j.bbrc.2022.02.025
- Aziz M.A., Sabeem M., Mullath S.K., Brini F., Masmoudi K. Plant group II LEA proteins: intrinsically disordered structure for multiple functions in response to environmental stresses // Biomolecules. 2021. V. 11. P. 1662. https:doi.org/10.3390/biom11111662
- Liu J., Shen J., Xu Y., Li X., Xiao J., Xiong L. Ghd2, A CONSTANS-like gene, confers drought sensitivity through regulation of senescence in rice // J. Exp. Bot. 2016. V. 67. P. 5785. https:doi.org/10.1093/jxb/erw344
- Kishor P., Hong Z., Miao G.H., Hu C., Verma D. Overexpression of Δ1-pyrroline-5-carboxylate synthetase increases proline production and confers osmotolerance in transgenic plants // Plant Physiol. 1995. V. 108. P. 1387. https:doi.org/10.1104/pp.108.4.1387
- Xu C., Shan J., Liu T., Wang Q., Ji Y., Zhang Y., Wang M., Xia N., Zhao L. CONSTANS-LIKE 1a positively regulates salt and drought tolerance in soybean // Plant Physiol. 2023. V. 191. P. 2427. https:doi.org/10.1093/plphys/kiac573p
- Zhao J., Qin B., Nikolay R., Spahn C.M.T., Zhang G. Translatomics: the global view of translation // Int. J. Mol. Sci. 2019. V. 20. P. 212. https:doi.org/10.3390/ijms20010212
- Zanetti M.E., Chang I.F., Gong F., Galbraith D.W., Bailey-Serres J. Immunopurification of polyribosomal complexes of Arabidopsis for global analysis of gene expression // Plant Physiol. 2005. V. 138. P. 624. https:doi.org/10.1104/pp.105.059477
- Mustroph A., Juntawong P., Bailey-Serres J. Isolation of plant polysomal mRNA by differential centrifugation and ribosome immunopurification methods // Methods Mol. Biol. 2009. V. 553. P. 109. https:doi.org/10.1007/978-1-60327-563-7_6
- Mustroph A., Zanetti M.E., Girke T., Bailey-Serres J. Isolation and analysis of mRNAs from specific cell types of plants by ribosome immunopurification // Methods Mol. Biol. 2013. V. 959. P. 277. https:doi.org/10.1007/978-1-62703-221-6_19
- Lin S.Y., Chen P.W., Chuang M.H., Juntawong P., Bailey-Serres J., Jauh G.Y. Profiling of translatomes of in vivo-grown pollen tubes reveals genes with roles in micropylar guidance during pollination in Arabidopsis // Plant Cell. 2014. V. 26. P. 602. https:doi.org/10.1105/tpc.113.121335
- Tian C.H., Zhang X.N., He J., Yu H.P., Wang Y., Shi B.H., Han Y.Y., Wang G.X., Feng X.M., Zhang C., Wang J., Qi J., Yu R., Jiao Y. An organ boundary-enriched gene regulatory network uncovers regulatory hierarchies underlying axillary meristem initiation // Mol. Syst. Biol. 2014. V. 10. P. 755. https:doi.org/10.15252/msb.20145470
- Ron M., Kajala K., Pauluzzi G., Wang D., Reynoso M.A., Zumstein K., Garcha J., Winte S., Masson H., Inagaki S., Garcha J., Winte S., Federici F., Sinha N., Deal R.B., et al. Hairy root transformation using Agrobacterium rhizogenes as a tool for exploring cell type-specific gene expression and function using tomato as a model // Plant Physiol. 2014. V. 166. P. 455. https:doi.org/10.1104/pp.114.239392
- Reynoso M.A., Blanco F.A., Bailey-Serres J., Crespi M., Zanetti M.E. Selective recruitment of mRNAs and miRNAs to polyribosomes in response to rhizobia infection in Medicago truncatula // Plant J. V. 73. 2013. P. 289. https:doi.org/10.1111/tpj.12033
- Castro-Guerrero N.A., Cui Y.Y., Mendoza-Cozatl D.G. Purification of translating ribosomes and associated mRNAs from soybean (Glycine max) // Curr. Protoc. Plant Biol. 2016. V. 1. P. 185. https:doi.org/10.1002/cppb.20011
- Zhao D.Y., Hamilton J.P., Hardigan M., Yin D.M., He T., Vaillancourt B., Reynoso M., Pauluzzi G., Funkhouser S., Cui Y.H., Bailey-Serres J., Jiang J., Buell C. R., Jiang N. Analysis of ribosome-associated mRNAs in rice reveals the importance of transcript size and GC content in translation // G3: Genes, Genomes, Genetics. 2017. V. 7. P. 203. https:doi.org/10.1534/g3.116.036020
- Jiao Y., Meyerowitz E.M. Cell-type specific analysis of translating RNAs in developing flowers reveals new levels of control // Mol. Syst. Biol. 2010. V. 6. P. 419. https:doi.org/10.1038/msb.2010.76
- Lin S.Y., Chen P.W., Chuang M.H., Juntawong P., Bailey-Serres J., Jauh G.Y. Profiling of translatomes of in vivo-grown pollen tubes reveals genes with roles in micropylar guidance during pollination in Arabidopsis // Plant Cell. 2014. V. 26. P. 602. https:doi.org/10.1105/tpc.113.121335
- Liu W., Sun J., Li J., Liu C., Si F., Yan B., Wang Z., Song X., Yang Y., Zhu Y., Cao X. Reproductive tissue-specific translatome of a rice thermo-sensitive genic male sterile line // J. Genet Genomics. 2022. V. 49. P. 624. https:doi.org/10.1016/j.jgg.2022.01.002
- Ding J.H., Lu Q., Ouyang Y.D., Mao H.L., Zhang P.B., Yao J.L., Xu C.G., Li X.H., Xiao J.H., Zhang Q.F. A long noncoding RNA regulates photoperiod-sensitive male sterility, an essential component of hybrid rice // Proc. Natl. Acad. Sci. USA. 2012. V. 109. P. 2654. https:doi.org/10.1073/pnas.1121374109
- Thellmann M., Andersen T.G., Vermeer J.E. Translating ribosome affinity purification (TRAP) to investigate Arabidopsis thaliana root development at a cell type-specific scale // J. Vis. Exp. 2020. V. 159: e60919 https:doi.org/10.3791/60919
- Andersen T.G. Naseer S., Ursache R., Wybouw B., Smet W., De Rybel B., Vermeer J.E. M., Geldne N. Diffusible repression of cytokinin signalling produces endodermal symmetry and passage cells // Nature. 2018. V. 555. P. 529. https:doi.org/10.1038/nature25976
- Van Verk M.C., Hickman R., Corne M.J., Pieterse M., Van Wees S.C. RNA-Seq: revelation of the messengers // Trends Plant Sci. 2013. V. 18. P. 175. https:doi.org/10.1016/j.tplants.2013.02.001
- Libault M., Pingault L., Zogli P., Schiefelbein J. Plant systems biology at the single-cell level // Trends Plant Sci. 2017. V. 22. P. 949. https:doi.org/10.1016/j.tplants.2017.08.006
- Mustroph A. Zanetti M.E., Jang C.J.H., Holtan H.E., Repetti P.P., Galbraith D.W., Girke T., Bailey-Serres J. Profiling translatomes of discrete cell populations resolves altered cellular priorities during hypoxia in Arabidopsis // Proc. Natl. Acad. Sci. USA. 2009. V. 106. P. 18843. https:doi.org/10.1073/pnas.0906131106
- Karve R., Iyer-Pascuzzi A.S. Digging deeper: high-resolution genome-scale data yields new insights into root biology // Curr. Opin. Plant Biol. 2015. V. 24. P. 24. https:doi.org/10.1016/j.pbi.2015.01.007
Supplementary files
