Биосинтез рекомбинантных вакцин в растительных системах экспрессии
- Authors: Уварова Е.А.1, Белавин П.А.1, Пермякова Н.В.1, Дейнеко Е.В.1
-
Affiliations:
- Федеральное государственное бюджетное научное учреждение “Федеральный исследовательский центр Институт цитологии и генетики Сибирского отделения Российской академии наук”
- Issue: Vol 71, No 5 (2024): Генетическая инженерия растений – достижения и перспективы
- Pages: 538-554
- Section: ОБЗОРЫ
- URL: https://journals.rcsi.science/0015-3303/article/view/269461
- DOI: https://doi.org/10.31857/S0015330324050045
- EDN: https://elibrary.ru/MMXZXD
- ID: 269461
Cite item
Abstract
Успехи генной инженерии способствовали возникновению нового раздела вакцинологии – создание рекомбинантных субъединичных вакцин, инициирующих формирование защитного иммунитета от различных заболеваний. Одной из перспективных и активно развивающихся систем экспрессии рекомбинантных белков медицинского назначения являются растения. В данном обзоре в общих чертах освещается формирование специфического и неспецифического иммунитета, функционирование гуморального и клеточного звеньев иммунитета, а также принципы создания рекомбинантных вакцинных препаратов. Более подробно рассматривается создание вакцинных препаратов для профилактики таких инфекций как грипп, коронавирусы, вирус папилломы человека, вирус гепатита В и норовирусы с примерами растительных рекомбинантных белков, профилактирующих эти заболевания. Дана оценка рынка рекомбинантных вакцин растительного происхождения и приведены примеры наиболее успешных из них. В целом обзор призван подчеркнуть актуальность растительных систем экспрессии для наработки рекомбинантных вакцинных препаратов и их возможности для быстрого реагирования на возникающие вызовы в области профилактики инфекционных заболеваний.
Full Text

About the authors
Е. А. Уварова
Федеральное государственное бюджетное научное учреждение “Федеральный исследовательский центр Институт цитологии и генетики Сибирского отделения Российской академии наук”
Author for correspondence.
Email: uvarova@bionet.nsc.ru
Russian Federation, Новосибирск
П. А. Белавин
Федеральное государственное бюджетное научное учреждение “Федеральный исследовательский центр Институт цитологии и генетики Сибирского отделения Российской академии наук”
Email: uvarova@bionet.nsc.ru
Russian Federation, Новосибирск
Н. В. Пермякова
Федеральное государственное бюджетное научное учреждение “Федеральный исследовательский центр Институт цитологии и генетики Сибирского отделения Российской академии наук”
Email: uvarova@bionet.nsc.ru
Russian Federation, Новосибирск
Е. В. Дейнеко
Федеральное государственное бюджетное научное учреждение “Федеральный исследовательский центр Институт цитологии и генетики Сибирского отделения Российской академии наук”
Email: uvarova@bionet.nsc.ru
Russian Federation, Новосибирск
References
- Tacket C.O., Mason H.S., Losonsky G., Clements J.D., Levine M.M., Arntzen C.J. Immunogenicity in humans of a recombinant bacterial antigen delivered in a transgenic potato // Nat. Med. 1998. V. 4. P. 607. https://doi.org/10.1038/nm0598-607
- Mason H.S., Lam D.M., Arntzen C.J. Expression of hepatitis B surface antigen in transgenic plants // Proc. Natl. Acad. Sci. U.S.A. 1992. V. 89. P. 11745. https://doi.org/10.1073/pnas.89.24.1174
- Lai T., Yang Y., Ng S.K. Advances in mammalian cell line development technologies for recombinant protein production // Pharmaceuticals. 2013. V. 26. P. 579. https://doi.org/10.3390/ph6050579
- Nielsen J. Production of biopharmaceutical proteins by yeast: advances through metabolic engineering // Bioengineered. 2013. V. 4. P. 207. https://doi.org/10.4161/bioe.22856
- Tripathi N.K., Shrivastava A. Recent developments in bioprocessing of recombinant proteins: Expression hosts and process development // Front. Bioeng. Biotechnol. 2019. V. 20. P. 420. https://doi.org/10.3389/fbioe.2019.00420
- Kumar M., Kumari N., Thakur N., Bhatia S.K., Saratale G.D., Ghodake G., Mistry B.M., Alavilli H, Kishor D.S., Du X., Chung S.M. A Comprehensive overview on the production of vaccines in plant-based expression systems and the scope of plant biotechnology to combat against SARS-CoV-2 virus pandemics // Plants. 2021. V.15. P. 1213. https://doi.org/10.3390/plants10061213
- Gerszberg A., Hnatuszko-Konka K. Compendium on food crop plants as a platform for pharmaceutical protein production // Int. J. Mol. Sci. 2022. V. 17. P. 3236. https://doi.org/10.3390/ijms23063236
- Hager K.J., Pérez Marc G., Gobeil P., Diaz R.S., Heizer G., Llapur C., Makarkov A.I., Vasconcellos E., Pillet S., Riera F., Saxena P., Geller Wolff P., Bhutada K., Wallace G., Aazami H., et al. CoVLP study team. Efficacy and safety of a recombinant plant-based adjuvanted Covid-19 vaccine // N. Engl. J. Med. 2022. V. 2. P. 2084. https://doi.org/10.1056/NEJMoa2201300
- Kurup V.M., Thomas J. Edible vaccines: Promises and challenges // Mol. Biotechnol. 2020. V. 62. P. 79. doi: 10.1007/s12033-019-00222-1
- Paradia P.K., Bhavale R., Agnihotri T., Jain A. A review on edible vaccines and biopharmaceutical products from plants // Curr. Pharm. Biotechnol. 2023. V. 24. P. 495. https://doi.org/10.1007/s12033-019-00222-1
- Sahoo A., Mandal A.K., Dwivedi K., Kumar V. A cross talk between the immunization and edible vaccine: Current challenges and future prospects // Life Sci. 2020. V. 15. P. 118343. https://doi.org/10.1016/j.lfs.2020.118343
- Debnath N., Thakur M., Khushboo, Negi N.P., Gautam V., Kumar Yadav A., Kumar D. Insight of oral vaccines as an alternative approach to health and disease management: An innovative intuition and challenges // Biotechnol. Bioeng. 2022. V. 119. P. 327. https://doi.org/10.1002/bit.27987
- Singhal D., Mishra R. Edible vaccine – an effective way for immunization // Endocr. Metab. Immune Disord. Drug Targets. 2023. V. 23. P. 458. https://doi.org/10.2174/1871530322666220621102818
- Global vaccine action plan 2011–2020. https://www.who.int/publications/i/item/global-vaccine-action-plan-2011-2020
- Kennedy J. Should childhood vaccinations be mandatory? // Perspect. Public Health. 2020. V. 140. P. 23. https://doi.org/10.1177/1757913919883303
- Moyle P.M. Biotechnology approaches to produce potent, self-adjuvanting antigen-adjuvant fusion protein subunit vaccines // Biotechnol. Adv. 2017. V. 35. P. 375. https://doi.org/10.1016/j.biotechadv.2017.03.005
- Silva-Gomes S., Decout A., Nigou J. Pathogen-associated molecular patterns (PAMPs) // Encyclopedia of Inflammatory Diseases/ Eds. M. Parnham. Basel: Birkhauser, 2014. https://doi.org/10.1007/978-3-0348-0620-6_35-1
- Akira S., Uematsu S., Takeuchi O. Pathogen recognition and innate immunity // Cell. 2006. V. 124. P. 783. https://doi.org/10.1016/j.cell.2006.02.015
- Iwasaki A., Medzhitov R. Regulation of adaptive immunity by the innate immune system // Science. 2010 V. 15. P. 291. doi: 10.1126/science.1183021
- Takeuchi O., Akira S. Pattern recognition Receptors and Inflammation // Cell. 2010. V. 140. P. 805. https://doi.org/10.1016/j.cell.2010.01.022
- Liew F.Y., Xu D., Brint E.K., O’Neill L.A. Negative regulation of toll-like receptor-mediated immune responses // Nat. Rev. Immunol. 2005. V. 5. P. 446. doi: 10.1038/nri1630
- Inohara, Chamaillard, McDonald C., Nuñez G. NOD-LRR proteins: role in host-microbial interactions and inflammatory disease // Annu. Rev. Biochem. 2005. V. 74. P. 355. https://doi.org/10.1146/annurev.biochem.74.082803.133347
- Upasani V, Rodenhuis-Zybert I, Cantaert T. Antibody-independent functions of B cells during viral infections // PLOS Pathog. 2021. V. 22. e1009708. https://doi.org/10.1371/journal.ppat.1009708
- Rahimi R.A., Luster A.D. Chemokines: critical regulators of memory T cell development, maintenance, and function // Adv. Immunol. 2018. V. 138. P. 71. https://doi.org/10.1016/bs.ai.2018.02.002
- Rybicki E.P. Plant molecular farming of virus-like nanoparticles as vaccines and reagents // Wiley Interdiscip. Rev. Nanomed. Nanobiotechn. 2020. V. 12. e1587. https://doi.org/10.1002/wnan.1587
- Rozov S.M., Deineko E.V. Recombinant VLP vaccines synthesized in plant expression systems: current updates and prospects // Molecular Biology. 2024. V. 58. P. 402. https://doi.org/10.1134/S0026893324700043
- Krammer F., Palese P. Universal influenza virus vaccines that target the conserved hemagglutinin stalk and conserved sites in the head domain // J. Infect. Dis. 2019. V. 8. P. 62. https://doi.org/10.1093/infdis/jiy711
- Sautto G. A., Kirchenbaum G. A., Ross T. M. Towards a universal influenza vaccine: Different approaches for one goal // Virol. J. 2018. V. 15. P. 17. https://doi.org/10.1186/s12985-017-0918-y
- Soema P.C., Kompier R., Amorij J.P., Kersten G.F.A. Current and next generation influenza vaccines: Formulation and production strategies // Eur. J. Pharm. Biopharm. 2015. V. 94. P. 251. https://doi.org/10.1016/j.ejpb.2015.05.023
- Dunkle L.M., Izikson R., Patriarca P., Goldenthal K.L., Muse D., Callahan J., Cox M.M.J. Efficacy of recombinant influenza vaccine in adults 50 years of age or older // N. Engl. J. Med. 2017. V. 376. P. 2427. https://doi.org/10.1056/NEJMoa1608862
- Ward B.J., Makarkov A., Séguin A., Pillet S., Trépanier S., Dhaliwall J., Libman M.D., Vesikari T., Landry N. Efficacy, immunogenicity, and safety of a plant-derived, quadrivalent, virus-like particle influenza vaccine in adults (18–64 years) and older adults (≥65 years): two Multicentre, randomised phase 3 trials // Lancet. 2020. V. 396. P. 1491. https://doi.org/10.1016/S0140-6736(20)32014-6
- D’Aoust M.A., Couture M.M., Charland N, Trépanier S., Landry N., Ors F., Vézina L.P. The production of hemagglutinin-based virus‐like particles in plants: A rapid, efficient and safe response to pandemic influenza // Plant Biotechnol. J. 2010. V. 8. P. 607. https://doi.org/10.1111/j.1467-7652.2009.00496.x
- Blokhina E.A., Mardanova E.S., Stepanova L.A., Tsybalova L.M., Ravin N.V. Plant-produced recombinant influenza A virus candidate vaccine based on flagellin linked to conservative fragments of M2 protein and hemagglutintin // Plants. 2020. V. 9. P. 162. https://doi.org/10.3390/plants9020162
- Sohrab S.S., Suhail M., Kamal M.A., Husen A., Azhar E.I. Recent development and future prospects of plant-based vaccines // Curr.t Drug Metab. 2017. V. 18. P. 831. https:doi.org/10.2174/1389200218666170711121810
- Eidenberger L., Kogelmann B., Steinkellner H. Plant-based biopharmaceutical engineering // Nat. Rev. Bioeng. 2023. V. 1. P. 426. https:doi.org/10.1038/s44222-023-00044-6
- Ward B.J.; Séguin A., Couillard J., Trépanier S., Landry N. Phase III: randomized observer-blind trial to evaluate lot-to-lot consistency of a new plant-derived quadrivalent virus like particle influenza vaccine in adults 18–49 years of age // Lancet. 2021. V. 396. P. 1491. https:doi.org/10.1016/j.vaccine.2021.01.004
- Status of COVID-19 vaccines within WHO EUL/PQ evaluation process https:extranet.who.int/prequal/sites/default/files/document_files/Status_COVID_VAX_08AUgust2023.pdf
- Mamedov T., Yuksel D., Gurbuzaslan I., Gulec B., Mammadova G., Ozdarendeli A., Pavel S.T.I., Yetiskin H., Kaplan B., Uygut M.A., Hasanova G. SARS-CoV-2 spike protein S1 subunit induces potent neutralizing responses in mice and is effective against Delta and Omicron variants // Fron. Plant Sci. 2023. V. 14. https:doi.org/10.3389/fpls.2023.1290042
- Marian A.J. Current state of vaccine development and targeted therapies for COVID-19: impact of basic science discoveries // Cardiovasc. Pathol. 2021. V. 50. P. 107278. https:doi.org/10.1016/j.carpath.2020.107278
- Mathew D.S., Pandya T., Pandya H., Vaghela Y., Subbian S. An overview of SARS-CoV-2 etiopathogenesis and recent developments in COVID-19 vaccines // Biomolecules. 2023. V. 24. P. 1565. https:doi.org/10.3390/biom13111565
- Chattopadhyay A., Jailani A.A.K., Mandal B. Exigency of plant-based vaccine against COVID-19 emergence as pandemic preparedness // Vaccines. 2023. V. 11. P. 1347. https:doi.org/10.3390/vaccines11081347
- Abou Baker D.H., Hassan E.M., El Gengaihi S. An overview on medicinal plants used for combating coronavirus: Current potentials and challenges // J. Agricult. Food Res.. 2023. V. 13. P. 100632. https:doi.org/10.1016/j.jafr.2023.100632
- Capell T., Twyman R.M., Armario-Najera V., Ma J.K., Schillberg S., Christou P. Potential applications of plant biotechnology against SARS-CoV-2 // Trends Plant Sci. 2020. V. 25. P. 635. https:doi.org/10.1016/j.tplants.2020.04.009
- Ma C., Su S., Wang J., Wei L., Du L., Jiang S. From SARS-CoV to SARS-CoV-2: safety and broad-spectrum are important for coronavirus vaccine development // Microbes Infect. 2020. V. 22. P. 245. https:doi.org/10.1016/j.micinf.2020.05.004
- Hodgins B., Pillet S., Landry N., Ward B.J. Prime-pull vaccination with a plant-derived virus-like particle influenza vaccine elicits a broad immune response and protects aged mice from death and frailty after challenge // Immun. Ageing. 2019. V. 16. P. 27. https:doi.org/10.1186/s12979-019-0167-6
- Makarkov A.I., Golizeh M., Ruiz-Lancheros E., Gopal A., Costas-Cancelas I.N., Chierzi S., Pillet S., Charland N., Landry N., Rouiller I., Wiseman P.W., Ndao M., Ward B.J. Plant-derived virus-like particle vaccines drive cross-presentation of influenza A hemagglutinin peptides by human monocyte-derived macrophages // NPJ Vaccines. 2019. V. 4. P 17. https:doi.org/10.1038/s41541-019-0111-y
- Ward B.J., Gobeil P., Séguin A., Atkins J., Boulay I., Charbonneau P.Y., Couture M., D’Aoust M.A., Dhaliwall J., Finkle C., Hager K., Mahmood A., Makarkov A., Cheng M.P., Pillet S. et al. Phase 1 randomized trial of a plant-derived virus-like particle vaccine for COVID-19 // Nat. Med. 2021. V. 27. P. 1071. https:doi.org/10.3390/life13030617
- Pillet S., Couillard J., Trépanier S., Poulin J.F., Yassine-Diab B., Guy B., Ward B.J., Landry N. Immunogenicity and safety of a quadrivalent plant-derived virus like particle influenza vaccine candidate-Two randomized Phase II clinical trials in 18 to 49 and 50 years old adults // PLOS One. 2019. V. 14. https:doi.org/10.1371/journal.pone.0216533
- Royal J.M., Simpson C.A., McCormick A.A., Phillips A., Hume S., Morton J., Shepherd J., Oh Y., Swope K., De Beauchamp J.L., Webby R.J., Cross R.W., Borisevich V., Geisbert T.W., Demarco J.K. et al. Development of a SARS-CoV-2 vaccine candidate using plant-based manufacturing and a tobacco mosaic virus-like nano-particle // Vaccines. 2021.V. 9. P. 1347. https:doi.org/10.3390/vaccines9111347
- Van Doorslaer K., Chen Z., Bernard H.U., Chan P.K.S., DeSalle R., Dillner J., Forslund O., Haga T., McBride A.A., Villa L.L., Burk R.D. Ictv report consortium. ICTV virus taxonomy profile: Papillomaviridae // J. Gen. Virol. 2018. V. 99. P. 989. https:doi.org/10.1099/jgv.0.001105
- Chabeda A., Yanez R.J.R, Lamprecht R., Meyers A.E., Rybicki E.P., Hitzeroth I.I. Therapeutic vaccines for high-risk HPV-associated diseases // Papillomavirus Res. 2018. V. 5 P. 46-58. https:doi.org/10.1016/j.pvr.2017.12.006
- Kirnbauer R., Booy F., Cheng N., Lowy D.R., Schiller J.T. Papillomavirus L1 major capsid protein self-assembles into virus-like particles that are highly immunogenic // Proc. Natl. Acad. Sci. U.S.A. 1992. V. 15. P. 12180. https:doi.org/10.1073/pnas.89.24.12180
- Wong-Arce A., González-Ortega O., Rosales-Mendoza S. Plant-made vaccines in the fight against cancer // Trends Biotechnol. 2017. V. 35. P. 241. https:doi.org/10.1016/j.tibtech.2016.12.002
- Shanmugaraj B., Malla A., Bulaon C.J.I., Phoolcharoen W., Phoolcharoen N. Harnessing the potential of plant expression system towards the production of vaccines for the prevention of human papillomavirus and cervical cancer // Vaccines. 2022. V. 10. P. 2064. https:doi.org/10.3390/vaccines10122064
- Barnabas R.V., Brown E.R., Onono M.A., Bukusi E.A., Njoroge B., Winer R.L., Galloway D.A., Pinder L.F., Donnell D., Wakhungu I., Congo O., Biwott C., Kimanthi S., Oluoch L., Heller K.B. et al. Efficacy of single-dose HPV vaccination among young African women // NEJM Evid. 2022. V. 1. EVIDoa2100056. https:doi.org/10.1056/EVIDoa2100056
- Reyburn R., Tuivaga E., Ratu T., Young S., Garland S.M., Murray G., Cornall A., Tabrizi S., Nguyen C.D., Jenkins K., Tikoduadua L., Kado J., Kama M., Rafai E., Devi R. et al. A single dose of quadrivalent HPV vaccine is highly effective against HPV genotypes 16 and 18 detection in young pregnant women eight years following vaccination: a retrospective cohort study in Fiji // Lancet Reg. Health West. Pac. 2023. V. 14. P. 100798. https:doi.org/10.1016/j.lanwpc.2023.100798
- Hildesheim A., Gonzalez P., Kreimer A.R., Wacholder S., Schussler J., Rodriguez A.C., Porras C., Schiffman M., Sidawy M., Schiller J.T., Lowy D.R., Herrero R. Costa Rica HPV Vaccine Trial (CVT) Group. Impact of human papillomavirus (HPV) 16 and 18 vaccination on prevalent infections and rates of cervical lesions after excisional treatment // Am. J. Obstet. Gynecol. 2016. V. 215. P. 212. https:doi.org/10.1016/j.ajog.2016.02.021
- Hung C.F., Ma B., Monie A., Tsen S.W., Wu T.C. Therapeutic human papillomavirus vaccines: current clinical trials and future directions // Expert Opin. Biol. Ther. 2008. V. 8. P. 421. https:doi.org/10.1517/14712598.8.4.421
- de Oliveira C.M., Fregnani J.H.T.G., Villa L.L. HPV vaccine: updates and highlights // Acta Cytol. 2019. V. 63. P. 159. https:doi.org/10.1159/000497617
- van der Burg S.H., Melief C.J. Therapeutic vaccination against human papilloma virus induced malignancies // Curr. Opin. Immunol. 2011. V. 23. P. 252. https:doi.org/10.1016/j.coi.2010.12.010
- Morrow MP, Yan J, Sardesai NY. Human papillomavirus therapeutic vaccines: targeting viral antigens as immunotherapy for precancerous disease and cancer // Expert Rev. Vaccines. 2013. V. 12. P. 271. https:doi.org/10.1586/erv.13.23
- Šmídková M., Holá M., Brouzdová J., Angelis K. J. Plant production of vaccine against HPV: a new perspectives // Human Papillomavirus and Related Diseases-From Bench to Bedside-A Clinical Perspective / Eds. D. Vanden. Broeck. InTech, 2012. P. 7. http://dx.doi.org/10.5772/28948
- Rosales R., López-Contreras M., Rosales C., Magallanes-Molina J.R., Gonzalez-Vergara R., Arroyo-Cazarez J.M., Ricardez-Arenas A., Del Follo-Valencia A., Padilla-Arriaga S., Guerrero M.V., Pirez M.A., Arellano-Fiore C., Villarreal F. Regression of human papillomavirus intraepithelial lesions is induced by MVA E2 therapeutic vaccine // Hum. Gene Ther. 2014. V. 25. P. 1035. https:doi.org/10.1089/hum.2014.024
- Rybicki E.P. Plant-based vaccines against viruses // Virol. J. 2014. V. 3. P. 205. https:doi.org/10.1186/s12985-014-0205-0
- Naupu P.N., van Zyl A.R., Rybicki E.P., Hitzeroth I.I. Immunogenicity of Plant-Produced Human Papillomavirus (HPV) Virus-Like Particles (VLPs) // Vaccines. 2020. V 8. P. 740. https:doi.org/10.3390/vaccines8040740
- Muthamilselvan T., Khan M.R.I., Hwang I. Assembly of human papillomavirus 16 L1 protein in Nicotiana benthamiana chloroplasts into highly immunogenic virus-like particles // J. Plant Biol. 2023. V. 6. P. 1. https:doi.org/10.1007/s12374-023-09393-6
- Hancock G., Blight J., Lopez-Camacho C., Kopycinski J., Pocock M., Byrne W., Price M.J., Kemlo P., Evans R.I., Bloss A., Saunders K., Kirton R., Andersson M., Hellner K., Reyes-Sandoval A. et al. A multi-genotype therapeutic human papillomavirus vaccine elicits potent T cell responses to conserved regions of early proteins // Sci. Rep. 2019. V. 10. P. 18713. https:doi.org/10.1038/s41598-019-55014-z
- Revill P.A., Chisari F.V., Block J.M., Dandri M., Gehring A.J., Guo H., Hu J., Kramvis A., Lampertico P., Janssen H.L.A., Levrero M., Li W., Liang T.J., Lim S.G., Lu F., et al. Members of the ICE-HBV Working Groups; ICE-HBV Stakeholders Group Chairs; ICE-HBV Senior Advisors; Zoulim F. A global scientific strategy to cure hepatitis B // Lancet Gastroenterol. Hepatol. 2019. V. 4. P. 545. https:doi.org/10.1016/S2468-1253(19)30119-0
- Joung Y.H., Park S.H., Moon K.B., Jeon J.H., Cho H.S., Kim H.S. The last ten years of advancements in plant-derived recombinant vaccines against hepatitis B // Int. J. Mol. Sci. 2016. V. 13. P. 1715. https:doi.org/10.3390/ijms17101715
- Brocke P., Schaefer S., Melber K., Jenzelewski V., Müller F., Dahlems U., Bartelsen O., Park K.-N., Janowicz Z.A., Gellissen G. Recombinant Hepatitis B Vaccines: Disease Characterization and Vaccine Production // Production of Recombinant Proteins: Novel Microbial and Eukaryotic Expression Systems / Eds. G. Gellissen Wiley-VCH Verlag GmbH & Co. KGaA, 2004. P. 319.
- Shouval D., Ilan Y., Adler R., Deepen R., Panet A., Even-Chen Z., Gorecki M., Gerlich W.H. Improved immunogenicity in mice of a mammalian cell-derived recombinant hepatitis B vaccine containing pre-S1 and pre-S2 antigens as compared with conventional yeastderived vaccines // Vaccine. 1994. V. 12. P. 1453. https:doi.org/10.1016/0264-410X(94)90155-4
- Thanavala Y., Yang Y.F., Lyons P., Mason H.S., Arntzen C. Immunogenicity of transgenic plant-derived hepatitis B surface antigen // Proc. Natl. Acad. Sci. U.S.A. 1995. V. 11. P. 3358. https:doi.org/10.1073/pnas.92.8.3358
- Kapusta J., Modelska A., Figlerowicz M., Pniewski T., Letellier M., Lisowa O., Yusibov V., Koprowski H., Plucienniczak A., Legocki A.B. A plant-derived edible vaccine against hepatitis B virus // FASEB J. 1999. V. 13. P. 1796 https:doi.org/10.1096/fasebj.13.13.1796
- Bruss V. Envelopment of the hepatitis B virus nucleocapsid // Virus Res. 2004. V 106. P. 199. https:doi.org/10.1016/j.virusres.2004.08.016
- Mechtcheriakova I.A., Eldarov M.A., Nicholson L., Shanks M., Skryabin K.G. Lomonossoff GP. The use of viral vectors to produce hepatitis B virus core particles in plants // J. Virol. Methods. 2006. V. 131. P. 10. https:doi.org/10.1016/j.jviromet.2005.06.020
- Pumpens P., Grens E. HBV core particles as a carrier for B cell/T cell epitopes // Intervirology. 2001. V. 44. P. 98. https:doi.org/10.1159/000050037
- Pniewski T. The twenty-year story of a plant-based vaccine against hepatitis B: stagnation or promising prospects? // Int. J. Mol. Sci. 2013. V. 21. P. 1978. https:doi.org/10.3390/ijms14011978
- Dobrica M.O., Lazar C., Paruch L., Skomedal H., Steen H., Haugslien S., Tucureanu C., Caras I., Onu A., Ciulean S., Branzan A., Clarke J.L., Stavaru C., Branza-Nichita N. A novel chimeric Hepatitis B virus S/preS1 antigen produced in mammalian and plant cells elicits stronger humoral and cellular immune response than the standard vaccine-constituent, S protein // Antiviral Res. 2017. V. 144. P. 256. https:doi.org/10.1016/j.antiviral.2017.06.017
- Pantazica A.M., Dobrica M.O., Lazar C, Scurtu C., Tucureanu C., Caras I., Ionescu I., Costache A., Onu A., Clarke J.L., Stavaru C., Branza-Nichita N. Efficient cellular and humoral immune response and production of virus-neutralizing antibodies by the Hepatitis B Virus S/preS116-42 antigen // Front. Immunol. 2022. V. 22. P. 941243. https:doi.org/10.3389/fimmu.2022.941243
- Sherwood J., Mendelman P.M., Lloyd E., Liu M., Boslego J., Borkowski A., Jackson A., Faix D., US Navy study team. Efficacy of an intramuscular bivalent norovirus GI.1/GII.4 virus-like particle vaccine candidate in healthy US adults // Vaccine. 2020. V. 22. P. 6442. https:doi.org/10.1016/j.vaccine.2020.07.069
- Mason H.S., Ball J.M., Shi J.J., Jiang X., Estes M.K., Arntzen C.J. Expression of Norwalk virus capsid protein in transgenic tobacco and potato and its oral immunogenicity in mice // Proc. Natl. Acad. Sci. U.S.A. 1996. V. 28. P. 5335. https:doi.org/10.1073/pnas.93.11.5335
- Zhang X., Buehner N.A., Hutson A.M., Estes M.K., Mason H.S. Tomato is a highly effective vehicle for expression and oral immunization with Norwalk virus capsid protein // Plant Biotechnol. J. 2006. V. 4. P. 419. https:doi.org/10.1111/j.1467-7652.2006.00191.x
- Tusé D., Malm M., Tamminen K., Diessner A., Thieme F., Jarczowski F., Blazevic V., Klimyuk V. Safety and immunogenicity studies in animal models support clinical development of a bivalent norovirus-like particle vaccine produced in plants // Vaccine. 2022. V. 11. P. 977. https:doi.org/10.1016/j.vaccine.2022.01.009
- Klimyuk V., Pogue G., Herz S., Butler J., Haydon H. Production of recombinant antigens and antibodies in Nicotiana benthamiana using ‘magnifection’ technology: GMP-compliant facilities for small- and large-scale manufacturing // Curr. Top. Microbiol. Immunol. 2014. V. 375. P. 127. https:doi.org/10.1007/82_2012_212
- Shahid N., Daniell H. Plant-based oral vaccines against zoonotic and non-zoonotic diseases // Plant Biotechnol. J. 2016. V. 14. P. 2079. https:doi.org/10.1111/pbi.12604
- Hadj Hassine I., Ben M’hadheb M., Almalki M.A., Gharbi J. Virus-like particles as powerful vaccination strategy against human viruses // Rev. Med. Virol. 2024. V. 34. P. e2498. https:doi.org/10.1002/rmv.2498
- Mallajosyula V.V., Citron M., Ferrara F., Lu X., Callahan C., Heidecker G.J., Sarma S.P., Flynn J.A., Temperton N.J., Liang X., Varadarajan R. Influenza hemagglutinin stem-fragment immunogen elicits broadly neutralizing antibodies and confers heterologous protection // Proc. Natl. Acad. Sci. U.S.A. 2014. V. 24. P. E2514. https:doi.org/10.1073/pnas.1402766111
- Laughlin R.C., Madera R., Peres Y., Berquist B.R., Wang L., Buist S., Burakova Y., Palle S., Chung CJ., Rasmussen M.V., Martel E., Brake D.A., Neilan J.G., Lawhon S.D., Adams L.G. et al. Plant-made E2 glycoprotein single-dose vaccine protects pigs against classical swine fever // Plant Biotechnol. J. 2019. V. 17. P. 410. https:doi.org/10.1111/pbi.12986
- Park Y., An D.J., Choe S., Lee Y., Park M., Park S., Gu S., Min K., Kim N.H., Lee S., Kim J.K., Kim H.Y., Sohn E.J., Hwang I. Development of recombinant protein-based vaccine against classical swine fever virus in pigs using transgenic Nicotiana benthamiana // Front. Plant Sci. 2019. V. 16. P. 624. https:doi.org/10.3389/fpls.2019.00624
- Oh Y., Park Y., Choi B.H., Park S., Gu S., Park J., Kim J.K., Sohn E.J. Field application of a new CSF vaccine based on plant-produced recombinant E2 marker proteins on pigs in areas with two different control strategies // Vaccines. 2021. V. 21. P. 537. https:doi.org/10.3390/vaccines9060537
- Shohag M.J.I., Khan F.Z., Tang L., Wei Y., He Z., Yang X. COVID-19 сrisis: How can plant biotechnology help? // Plants. 2021. V. 12. P. 352. https:doi.org/10.3390/plants10020352
- Takeyama N., Kiyono H., Yuki Y. Plant-based vaccines for animals and humans: recent advances in technology and clinical trials // Ther. Adv. Vaccines. 2015. V. 3. P. 139. https:doi.org/10.1177/2051013615613272
- Thanavala Y., Mahoney M., Pal S., Scott A., Richter L., Natarajan N., Goodwin P., Arntzen C.J., Mason H.S. Immunogenicity in humans of an edible vaccine for hepatitis B // Proc. Natl. Acad. Sci. U.S.A. 2005. V. 1. P. 3378. https:doi.org/10.1073/pnas.040989910
- Nochi T., Takagi H., Yuki Y., Yang L., Masumura T., Mejima M., Nakanishi U., Matsumura A., Uozumi A., Hiroi T., Morita S., Tanaka K., Takaiwa F., Kiyono H. Rice-based mucosal vaccine as a global strategy for cold-chain- and needle-free vaccination// Proc. Natl. Acad. Sci. U.S.A. 2007. V. 26. P. 10986. https:doi.org/10.1073/pnas.0703766104
- Yuki Y., Mejima M., Kurokawa S., Hiroiwa T., Takahashi Y., Tokuhara D., Nochi T., Katakai Y., Kuroda M., Takeyama N., Kashima K., Abe M., Chen Y., Nakanishi U., Masumura T. et al. Induction of toxin-specific neutralizing immunity by molecularly uniform rice-based oral cholera toxin B subunit vaccine without plant-associated sugar modification // Plant Biotechnol J. 2013. V. 11. P. 799. https:doi.org/10.1111/pbi.12071
- Yusibov V., Hooper D.C., Spitsin S.V., Fleysh N., Kean R.B., Mikheeva T., Deka D., Karasev A., Cox S., Randall J., Koprowski H. Expression in plants and immunogenicity of plant virus-based experimental rabies vaccine // Vaccine. 2002. V. 19 P. 3155. https:doi.org/10.1016/S0264-410X(02)00260-8
- Lu L., Duong V.T., Shalash A.O., Skwarczynski M., Toth I. Chemical conjugation strategies for the development of protein-based subunit nanovaccines // Vaccines. 2021. V. 28. P. 563. https:doi.org/10.3390/vaccines9060563
- Rybicki E.P. Plant-produced vaccines: promise and reality // Drug Discov. Today. 2009. V. 14. P. 16. https:doi.org/10.1016/j.drudis.2008.10.002
- Eidenberger L, Kogelmann B, Steinkellner H Plant-based biopharmaceutical engineering // Nat. Rev. Bioeng. 2023. V 1 P. 426. https:doi.org/10.1038/s44222-023-00044-6
Supplementary files
