Рекомбинантные моноклональные антитела, синтезируемые в растительных системах экспрессии: проблемы и перспективы
- Authors: Загорская А.А.1, Дейнеко Е.В.1
-
Affiliations:
- Федеральное государственное бюджетное научное учреждение “Федеральный исследовательский центр Институт цитологии и генетики Сибирского отделения Российской академии наук”
- Issue: Vol 71, No 5 (2024): Генетическая инженерия растений – достижения и перспективы
- Pages: 520-537
- Section: ОБЗОРЫ
- URL: https://journals.rcsi.science/0015-3303/article/view/269459
- DOI: https://doi.org/10.31857/S0015330324050037
- EDN: https://elibrary.ru/MNAFWV
- ID: 269459
Cite item
Abstract
В последнее десятилетие широкое распространение получили моноклональные антитела (МКА) в качестве диагностических и терапевтических препаратов. Их основное преимущество заключается в высокой специфичности, низкой токсичности и, соответственно, более высокой безопасности при лечении инфекционных и онкологических заболеваний. Широкие возможности использования МКА привели к активной разработке технологий их производства. В обзоре описываются преимущества растительных систем для наработки МКА по сравнению с традиционными системами экспрессии. Особое внимание уделяется исследованиям, направленным на увеличение уровня экспрессии рекомбинантных МКА, приближение профиля гликозилирования к белкам человека, а также на отработку технологических особенностей, позволяющих добиться конкурентоспособности МКА растительного происхождения. Отдельный раздел посвящен успехам, достигнутым в этой области. В заключительной части рассмотрены перспективы исследований, связанные с получением МКА растительного происхождения с улучшенными свойствами.
Full Text

About the authors
А. А. Загорская
Федеральное государственное бюджетное научное учреждение “Федеральный исследовательский центр Институт цитологии и генетики Сибирского отделения Российской академии наук”
Author for correspondence.
Email: zagorska@bionet.nsc.ru
Russian Federation, Новосибирск
Е. В. Дейнеко
Федеральное государственное бюджетное научное учреждение “Федеральный исследовательский центр Институт цитологии и генетики Сибирского отделения Российской академии наук”
Email: zagorska@bionet.nsc.ru
Russian Federation, Новосибирск
References
- Walsh G. Biopharmaceutical benchmarks 2018 // Nat Biotechnol. 2018. V. 36. P. 1136. https://doi.org/10.1038/nbt.4305
- Fischer R., Vasilev N., Twyman R.M., Schillberg S. High-value products from plants: the challenges of process optimization // Curr. Opin. Biotechnol. 2015. V. 32. P. 156. https://doi.org/10.1016/j.copbio.2014.12.018
- Fischer R., Schillberg S., Hellwig S., Twyman R.M., Drossard J. GMP issues for recombinant plant-derived pharmaceutical proteins // Biotechnol. Adv. 2012. V. 30. P. 434. https://doi.org/10.1016/j.biotechadv.2011.08.007
- Göritzer K., Strasser R. Glycosylation of Plant-Produced Immunoglobulins // Antibody Glycosylation. Experientia Supplementum. V. 112 / Ed. Pezer M.Springer, Cham., 2021. https://doi.org/10.1007/978-3-030-76912-3_16
- Webster D.E., Thomas M.C. Post-translational modification of plant-made foreign proteins; glycosylation and beyond // Biotechnol. Adv. 2012. V. 30. P. 410. https://doi.org/10.1016/j.biotechadv.2011.07.015
- DeMuynck B., Navarre C., Boutry M. Production of antibodies in plants: status after twenty years // Plant Biotechnol. J. 2010. V. 8. P. 529. https://doi.org/10.1111/j.1467-7652.2009.00494
- Moussavou G., Ko K., Lee J. H., Choo Y. K. Production of monoclonal antibodies in plants for cancer immunotherapy // Biomed. Res. Int. 2015. Art. 2015:306164. https://doi.org/10.1155/2015/306164
- Bakema J.E., van Egmond M. Immunoglobulin A: a next generation of therapeutic antibodies? // MAbs. 2011. V. 3. P. 352. https://doi.org/10.4161/mabs.3.4.16092
- Longet S., Miled S., Lotscher M., Miescher S.M., Zuercher A.W., Corthesy B. Human plasma-derived polymeric IgA and IgM antibodies associate with secretory component to yield biologically active secretory-like antibodies // J. Biol. Chem. 2013. V. 288. P. 4085. https://doi.org/10.1074/jbc.M112.410811
- Lomonossoff G.P., D’Aoust M.-A. Plant-produced biopharmaceuticals: a case of technical developments driving clinical deployment // Science. 2016. V. 353. P. 1237. https://doi.org/10.1126/science.aaf6638
- Stieger M., Neuhaus G., Momma T., Schell J., Kreuzaler F. Self assembly of immunoglobulins in the cytoplasm of alga Acetabularia mediterranea // Plant Sci. 1991. V. 73. P. 181. https://doi.org/10.1016/0168-9452(91)90027-6
- Hiatt A., Cafferkey R., Bowdisk K. Production of antibodies in transgenic plants // Nature. 1989. V. 342. P. 76. https://doi.org/10.1038/342076a0
- Twyman RM, Stoger E, Schillberg S, Christou P, Fischer R. Molecular farming in plants: host systems and expression technology // Trends Biotechnol. 2003. V. 21. P. 570. https://doi.org/10.1016/j.tibtech.2003.10.002
- Chng J., Wang T., Nian R., Lau A., Hoi K.M., Ho S.C., Gagnon P., Bi X., Yang Y. Cleavage efficient 2A peptides for high level monoclonal antibody expression in CHO cells // MAbs. 2015. V. 7. P. 403. https://doi.org/10.1080/19420862.2015.1008351
- Ho S.C., Koh E.Y., van Beers M., Mueller M., Wan C., Teo G., Song Z., Tong Y.W., Bardor M., Yang Y. Control of IgG LC:HC ratio in stably transfected CHO cells and study of the impact on expression, aggregation, glycosylation and conformational stability // J. Biotechnol. 2013. V. 165. P. 157. https://doi.org/10.1016/j.jbiotec.2013.03.019
- Ma J.K.-C., Hiatt A., Hein M. Generation and assembly of secretory antibodies in plants // Science. 1995. V. 268. P. 716. https://doi.org/10.1126/science.7732380
- Chen L., Marmey P., Taylor N.J., Brizard J.P., Espinoza C., D’Cruz P., Huet H., Zhang S., de Kochko A., Beachy R.N., Fauquet C.M. Expression and inheritance of multiple transgenes in rice plants // Nat. Biotechnol. 1998. V. 16. P. 1060. https://doi.org/10.1038/3511
- De Muynck B., Navarre C., Boutry M. Production of antibodies in plants: status after twenty years // Plant Biotechnol. J. 2010. V. 8. P. 529. https://doi.org/10.1111/j.1467-7652.2009.00494.x
- Luke G.A., Ryan M.D. The protein coexpression problem in biotechnology and biomedicine: virus 2A and 2A-like sequences provide a solution // Future Virol. 2013. V. 8. P. 983. https://doi.org/10.2217/fvl.13.82
- Urwin P.E., McPherson M.J., Atkinson H.J. Enhanced transgenic plant resistance to nematodes by dual proteinase inhibitor constructs // Planta 1998. V. 204. P. 472. https://doi.org/10.1007/s004250050281
- Ho S.C., Bardor M., Li B., Lee J.J., Song Z., Tong Y.W., Goh L.-T., Yang Y. Comparison of internal ribosome entry site (IRES) and Furin-2A (F2A) for monoclonal antibody expression level and quality in CHO cells // PLOS One 2013. V. 8. Art. e63247. https://doi.org/10.1371/journal.pone.0063247
- Marcos J.F., Beachy R.N. In-vitro characterization of a cassette to accumulate multiple proteins through synthesis of a self-processing polypeptide // Plant Mol. Biol. 1994. V. 24. P. 495. https://doi.org/10.1007/BF00024117
- Lin Y., Hung Ch.-Y., Bhattacharya C., Nichols S., Rahimuddin H., Kittur F. S., Leung T.C., Xie J. An effective way of producing fully assembled antibody in transgenic tobacco plants by linking heavy and light chains via a self-cleaving 2A peptide // Front. Plant Sci. 2018. V. 9. P. 1379. https://doi.org/10.3389/fpls.2018.01379
- Luke G., Roulston C., Tilsner J., Ryan M. Growing uses of 2A in plant biotechnology // Biotechnology / Eds. D. Ekinci. Rijek: InTech, 2015. P. 165. https://doi.org/10.5772/59878
- Ko K. Expression of recombinant vaccines and antibodies in plants // Monoclon. Antib. Immunodiagn. Immunother. 2014. V. 33. P. 192. https://doi.org/10.1089/mab.2014.0049
- Chen L., Yang X., Luo D., Yu W. Efficient production of a bioactive Bevacizumab monoclonal antibody using the 2A self-cleavage peptide in transgenic rice callus // Front. Plant Sci. 2016. V. 7. P 1156. https://doi.org/10.3389/fpls.2016.01156
- Chikwamba R.K., Scott M.P., Mejia L.B., Mason H.S., Wang K. Localization of a bacterial protein in starch granules of transgenic maize kernels // Proc. Natl. Acad. Sci. USA. 2003. V. 100. P. 11127. https://doi.org/10.1073/pnas.1836901100
- Denecke J., De Rycke R., Botterman J. Plant and mammalian sorting signals for protein retention in the endoplasmic reticulum contain a conserved epitope // EMBO J. 1992. V. 11. P. 2345. https://doi.org/10.1002/j.1460-2075.1992.tb05294.x
- Denecke J., Botterman J., Deblaere R. Protein secretion in plant cells can occur via a default pathway // Plant Cell. 1990. V. 2. P. 51. https://doi.org/10.1105/tpc.2.1.51
- Frigerio L., Vine N.D., Pedrazzini E., Hein M.B., Wang F., Ma J.K., Vitale A. Assembly, secretion, and vacuolar delivery of a hybrid immunoglobulin in plants // Plant Physiol. 2000. V. 123. P. 1483. https://doi.org/10.1104/pp.123.4.1483
- Hadlington J.L., Santoro A., Nuttall J., Denecke J., Ma J.K.C., Vitale A., Frigerio L. The C-terminal extension of a hybrid immunoglobulin A/G heavy chain is responsible for its Golgi-mediated sorting to the vacuole // Mol. Biol. Cell. 2003. V. 14. P. 2592. https://doi.org/10.1091/mbc.e02-11-0771
- Ellgaard L., Helenius A. Quality control in the endoplasmic reticulum // Nat. Rev. Mol. Cell Biol. 2003. V. 4. P. 181. https://doi.org/10.1038/nrm1052
- Nicholson L., Gonzalez-Melendi P., vanDolleweerd C., Tuck H., Perrin Y., Ma J.K.C., Fischer R., Christou P., Stoger E. A recombinant multimeric immunoglobulin expressed in rice shows assembly dependent subcellular localization in endosperm cells // Plant Biotechnol. J. 2005. V. 3. P. 115. https://doi.org/10.1111/j.1467-7652.2004.00106.x
- Chin-Fatt A, Menassa R.A VHH-Fc fusion targeted to the chloroplast thylakoid lumen assembles and neutralizes enterohemorrhagic E. coli O157:H7 // Front. Plant Sci. 2021. V. 28. P. 686421. https://doi.org/10.3389/fpls.2021.686421
- Kubis S.E., Lilley K.S., Jarvis P. Isolation and preparation of chloroplasts from Arabidopsis thaliana plants // 2D PAGE: Sample Preparation and Fractionation. Methods in Molecular Biology. V. 425. / Ed. A. Posch. Humana Press, 2008. P. 171. https://doi.org/10.1007/978-1-60327-210-0_16
- Mayfield S.P, Franklin S.E., Lerner R.A. Expression and assembly of a fully active antibody in algae // Proc. Natl. Acad. Sci. USA. 2003. V. 21. P. 438. https://doi.org/10.1073/pnas.0237108100
- Grabsztunowicz M., Koskela M.M., Mulo P. Post-translational modifications in regulation of chloroplast function: recent advances // Front. Plant Sci. 2017. V. 8. P. 240. https://doi.org/10.3389/fpls.2017.00240
- Stadlmann J., Pabst M., Kolarich D., Kunert R., Altmann F. Analysis of immunoglobulin glycosylation by LC-ESI-MS of glycopeptides and oligosaccharides // Proteomics. 2008. V. 8. P. 2858. https://doi.org/10.1002/pmic.200700968
- Stelter S., Paul M. J., Teh A.Y.-H., Grandits M., Altmann F., Vanier J., Bardor M., Castilho A., Allen L. R., Ma J. K-C. Engineering the interactions between a plant-produced HIV antibody and human Fc receptors // Plant Biotechnol. J. 2020. V. 18. P. 402. https://doi.org/10.1111/pbi.13207
- Yoo J.Y., Ko K.S., Lee S.Y., Lee K.O. Glycoengineering in plants for the development of N-glycan structures compatible with biopharmaceuticals // Plant Biotechnol. Rep. 2014. V. 8. P. 357. https://doi.org/10.1007/s11816-014-0328-1
- Bolton G.R., Ackerman M.E., Boesch A.W. Separation of nonfucosylated antibodies with immobilized FcgammaRIII receptors // Biotechnol. Prog. 2013. V. 29. P. 825. https://doi.org/10.1002/btpr.1717
- Loos A., Steinkellner H. IgG-Fc glycoengineering in non-mammalian expression hosts // Arch. Biochem. Biophys. 2012. V. 526. P. 167. https://doi.org/10.1016/j.abb.2012.05.011
- Thomann M., Schlothauer T., Dashivets T., Malik S., Avenal C., Bulau P., Ruger P., Reusch D. In vitro glycoengineering of IgG1 and its effect on Fc receptor binding and ADCC activity // PLOS One. 2015. V. 10. Art. e0134949. https://doi.org/10.1371/journal.pone.0134949
- Piron R., Santens F., De Paepe A., Depicker A., Callewaert N. Using GlycoDelete to produce proteins lacking plant-specific N-glycan modification in seeds // Nat. Biotechnol. 2015. V. 33. P. 1135. https://doi.org/10.1038/nbt.3359
- Madeira L.M., Szeto T.H., Ma J.K., Drake P.M.W. Rhizosecretion improves the production of Cyanovirin-N in Nicotiana tabacum through simplified downstream processing // Biotechnol. J. 2016. V. 11. P. 910. https://doi.org/10.1002/biot.201500371
- Ma J.K., Drossard J., Lewis D., Altmann F., Boyle J., Christou P., Cole T., Dale P., van Dolleweerd C.J., Isitt V., Katinger D., Lobedan M., Mertens H., Paul M.J., Rademacher T. et al. Regulatory approval and a first-in-human phase I clinical trial of a monoclonal antibody produced in transgenic tobacco plants // Plant Biotechnol. J. 2015. V. 13. P. 1106. https://doi.org/10.1111/pbi.12416
- Castilho A., Gruber C., Thader A., Oostenbrink C., Pechlaner M., Steinkellner H., Altmann F. Processing of complex N-glycans in IgG Fc-region is affected by core fucosylation // MAbs. 2015. V. 7. P. 863. https://doi.org/10.1080/19420862.2015.1053683
- Schneider J., Castilho A., Pabst M., Altmann F., Gruber C., Strasser R., Gattinger P., Seifert G.J., Steinkellner H. Characterization of plants expressing the human beta1,4-galactosyltrasferase gene // Plant Physiol. Biochem. 2015. V. 92. P. 39. https://doi.org/10.1016/j.plaphy.2015.04.010
- Buyel J.F., Fischer R. A juice extractor can simplify the downstream processing of plant-derived biopharmaceutical proteins compared to blade-based homogenizers // Process Biochem. 2014. V. 50. P. 859. https://doi.org/10.1016/j.procbio.2015.02.017
- McLean M.D., Chen R.J., Yu D.Q., Mah K.Z., Teat J., Wang H.F., Zaplachinski S., Boothe J., Hall J.C. Purification of the therapeutic antibody trastuzumab from genetically modified plants using safflower protein A-oleosin oilbody technology // Transgenic Res. 2012. V. 21. P. 1291. https://doi.org/10.1007/s11248-012-9603-5
- Hussack G., Grohs B.M., Almquist K.C., McLean M.D., Ghosh R., Hall J.C. Purification of plant-derived antibodies through direct immobilization of affinity ligands on cellulose // J. Agric. Food Chem. 2010. V. 58. P. 3451. https://doi.org/10.1021/jf9040657
- Conley A.J., Joensuu J.J., Richman A., Menassa R. Protein body-inducing fusions for high-level production and purification of recombinant proteins in plants // Plant Biotechnol. J. 2011. V. 9. P. 419. https://doi.org/10.1111/j.1467-7652.2011.00596.x
- Li W., Prabakaran P., Chen, W., Zhu Z., Feng Y., Dimitrov D.S. Antibody aggregation: insights from sequence and structure // Antibodies. 2016. V. 5. P. 19. https://doi.org/10.3390/antib5030019
- Twyman R.M., Schillberg S., Fischer R. Optimizing the yield of recombinant pharmaceutical proteins in plants // Curr. Pharm. Des. 2013. V. 19. P. 5486. https://doi.org/10.2174/1381612811319310004
- Xu J., Towler M., Weathers P.J. Platforms for plant-based protein production // Bioprocessing of plant in vitro systems. Reference series in phytochemistry / Eds. A. Pavlov, T. Bley. Springer, Cham. 2018. P. 509. https://doi.org/10.1007/978-3-319-54600-1_14
- Matoba N., Davis K.R., Palmer K.E. Recombinant protein expression in Nicotiana // Methods Mol. Biol. 2011. V. 701. P. 199. doi: 10.1007/978-1-61737-957-4_11
- Gleba Y., Klimyuk V., Marillonnet S. Viral vectors for the expression of proteins in plants // Curr. Opin. Biotechnol. 2007. V. 18. P. 134. https://doi.org/10.1016/j.copbio.2007.03.002
- Huang C., Xie Y., Zhou X. Efficient virus-induced gene silencing in plants using a modified geminivirus DNA1 component // Plant Biotechnol. J. 2009. V. 7. P. 254. https://doi.org/10.1111/j.1467-7652.2008.00395.x
- Gleba Y., Klimyuk V., Marillonnet S. Magnifection – a new platform for expressing recombinant vaccines in plants // Vaccine. 2005. V. 23. P. 2042. https://doi.org/10.1016/j.vaccine.2005.01.006
- Krenek P., Samajova O., Luptovciak I., Doskocilova A., Komis G., Samaj J. Transient plant transformation mediated by Agrobacterium tumefaciens: principles, methods and applications // Biotechnol. Adv. 2015. V. 33. P. 1024. http://doi.org/10.1016/j.biotechadv.2015.03.012
- Yao J., Weng Y., Dickey A., Wang K.Y. Plants as factories for human pharmaceuticals: applications and challenges // Int. J. Mol. Sci. 2015 V. 16. P. 28549. https://doi.org/10.3390/ijms161226122
- Chen Q., Davis K.R. The potential of plants as a system for the development and production of human biologics // F1000Res. 2016. V. 5. P. 912. https://doi.org/10.12688/f1000research.8010.1
- Holtz B.R., Berquist B.R., Bennett L.D., Kommineni V.J., Munigunti R.K., White E.L., Wilkerson D.C., Wong K.Y., Ly L.H., Marcel S. Commercial-scale biotherapeutics manufacturing facility for plant-made pharmaceuticals // Plant Biotechnol. J. 2015. V. 13. P. 1180. https://doi.org/10.1111/pbi.12469
- Xu J., Dolan M.C., Medrano G., Cramer C.L., Weathers P.J. Green factory: plants as bioproduction platforms for recombinant proteins // Biotechnol. Adv. 2012. V. 30. P. 1171. https://doi.org/10.1016/j.biotechadv.2011.08.020
- Wongsamuth R., Doran P.M. Production of monoclonal antibodies by tobacco hairy roots // Biotechnol. Bioeng. 1997. V. 54. P. 401. https://doi.org/10.1002/(SICI)1097-0290(19970605) 54:5<401::AID-BIT1>3.0.CO;2-I
- Häkkinen S.T., Raven N., Henquet M., Laukkanen M.-L., Anderlei T., Pitkänen J.P., Twyman R.M., Bosch D., Oksman-Caldentey K.M., Schillberg S., Ritala A. Molecular farming in tobacco hairy roots by triggering the secretion of a pharmaceutical antibody // Biotechnol. Bioeng. 2014. V. 111. P. 336. https://doi.org/10.1002/bit.25113
- Lonoce C., Marusic C., Morrocchi E., Salzano A.M., Scaloni A., Novelli F., Pioli C., Feeney M., Frigerio L., Donini M. Enhancing the secretion of a glyco-engineered anti-CD20 scFv-Fc antibody in hairy root cultures // Biotechnol. J. 2019. V. 14: e1800081. https://doi.org/10.1002/biot.201800081
- Kircheis R., Halanek N., Koller I., Jost W., Schuster M., Gorr G., Hajszan K., Nechansky A. Correlation of ADCC activity with cytokine release induced by the stably expressed, glyco-engineered humanized Lewis Y-specific monoclonal antibody MB314 // MAbs. 2012. V. 4. P. 532. https://doi.org/10.4161/mabs.20577
- Reski R., Parsons J., Decker E.L. Moss-made pharmaceuticals: from bench to bedside // Plant Biotechnol. J. 2015. V. 13. P. 1191. https://doi.org/10.1111/pbi.12401
- Decker E.L., Parsons J., Reski R. Glyco-engineering for biopharmaceutical production in moss bioreactors // Front. Plant Sci. 2014. V. 9. P. 346. https://doi.org/10.3389/fpls.2014.00346
- Schuster M., Jost W., Mudde G.C., Wiederkum S., Schwager C., Janzek E., Altmann F., Stadlmann J., Stemmer C., Gorr G. In vivo glyco-engineered antibody with improved lytic potential produced by an innovative non-mammalian expression system // Biotechnol. J. 2007. V. 2. P. 700. https://doi.org/10.1002/biot.200600255
- Kircheis R., Halanek N., Koller I., Jost W., Schuster M., Gorr G., Hajszan K., Nechansky A. Correlation of ADCC activity with cytokine release induced by the stably expressed, glyco-engineered humanized Lewis Y-specific monoclonal antibody MB314 // MAbs. 2012. V. 4. P. 532. https://doi.org/10.4161/mabs.20577
- Hempel F., Maier U. G. An engineered diatom acting like a plasma cell secreting human IgG antibodies with high efficiency // Microb. Cell Fact. 2012. V. 11. P. 126. https://doi.org/10.1186/1475-2859-11-126
- Vanier G., Hempel F., Chan P., Rodamer M., Vaudry D., Maier U. G., Lerouge P., Bardor M. Biochemical characterization of human anti-hepatitis B monoclonal antibody produced in the microalgae Phaeodactylum tricornutum // PLOS One. 2015. V. 10. Art. e0139282. https://doi.org/10.1371/journal.pone.0139282
- Tran M., Zhou B., Pettersson P.L., Gonzalez M.J., Mayfield S.P. Synthesis and assembly of a full-length human monoclonal antibody in algal chloroplasts // Biotechnol. Bioeng. 2009. V. 1. P. 663. https://doi.org/10.1002/bit.22446
- Tran M., Van C., Barrera D.J., Petterson P.L., Peinado C.D., Bui J., Mayfield S.P. Production of unique immunotoxin cancer therapeutics in algal chloroplasts // Proc. Natl. Acad. Sci. USA. 2013. V. 110. P. E15. https://doi.org/10.1073/pnas.1214638110
- Barrera D.J., Rosenberg J.N., Chiu J.G., Chang Y.N., Debatis M., Ngoi S.M., Chang J.T., Shoemaker C.B., Oyler G.A., Mayfield S.P. Algal chloroplast produced camelid VH H antitoxins are capable of neutralizing botulinum neurotoxin // Plant Biotechnol. J. 2015. V. 13. P. 117. https://doi.org/10.1111/pbi.12244
- Cox K.M., Sterling J.D., Regan J.T., Gasdaska J.R., Frantz K.K., Peele C.G., Black A., Passmore D., Moldovan-Loomis C., Srinivasan M., Cuison S., Cardarelli P.M., Dickey L.F. Glycan optimization of a human monoclonal antibody in the aquatic plant Lemna minor // Nat. Biotechnol. 2006. V. 24. P. 1591. https://doi.org/10.1038/nbt1260
- Gasdaska J.R., Sherwood S., Regan J.T., Dickey L.F. An afucosylated anti-CD20 monoclonal antibody with greater antibody-dependent cellular cytotoxicity and B-cell depletion and lower complement-dependent cytotoxicity than rituximab // Mol. Immunol. 2012. V. 50. P. 134. https://doi.org/10.1016/j.molimm.2012.01.001
- Donini M., Marusic C. Current state-of-the-art in plant-based antibody production systems // Biotechnol. Lett. 2019. V. 41. P. 335. https://doi.org/10.1007/s10529-019-02651-z
- Xu J., Zhang N. On the way to commercializing plant cell culture platform for biopharmaceuticals: present status and prospect // Pharm. Bioprocess. 2014. V. 2. P. 499. https://doi.org/10.4155/pbp.14.32
- Ma J.K., Lehner T. Prevention of colonization of Streptococcus mutans by topical application of monoclonal antibodies in human subjects // Arch. Oral Biol. 1990. V. 35 Suppl. P. 115S. https://doi.org/10.1016/0003-9969(90)90140-6
- Vamvaka E., Twyman R.M., Murad A.M., Melnik S., Teh A.Y., Arcalis, E., Altmann F., Stoger E., Rech E., Ma J.K.C., Christou P., Capell T. Rice endosperm produces an underglycosylated and potent form of the hiv‐neutralizing monoclonal antibody 2g12 // Plant Biotechnol. J. 2015. V. 14. P. 97. https://doi.org/10.1111/pbi.12360
- Zeitlin L., Olmsted S.S., Moench T.R., Co M.S., Martinell B.J., Paradkar V.M., Russell D.R., Queen C., Cone R.A., Whaley K.J. A humanized monoclonal antibody produced in transgenic plants for immunoprotection of the vagina against genital herpes // Nat Biotechnol. 1998. V. 16. P. 1361. https://doi.org/10.1038/4344
- Bulaon C.J.I., Khorattanakulchai N., Rattanapisit K., Sun H., Pisuttinusart N., Strasser R., Tanaka S., Soon-Shiong P., Phoolcharoen W. Antitumor effect of plant-produced anti-CTLA-4 monoclonal antibody in a murine model of colon cancer // Front. Plant Sci. 2023. V. 29. P. 1149455. https://doi.org/10.3389/fpls.2023.1149455
- Klimyuk V., Pogue G., Herz S., Butler J., Haydon H. Production of recombinant antigens and antibodies in Nicotiana benthamiana using ‘magnifection’ technology: GMP-compliant facilities for small- and large-scale manufacturing // Curr. Top Microbiol. Immunol. 2014. V. 375. P. 127. https://doi.org/10.1007/82_2012_212
- Chen Q. Development of plant-made monoclonal antibodies against viral infections // Curr. Opin. Virol. 2022. V. 52. P. 148. https://doi.org/10.1016/j.coviro.2021.12.005
- Kuo Y.C., Tan C.C., Ku J.T., Hsu W.C., Su S.C., Lu C.A., Huang L.F. Improving pharmaceutical protein production in Oryza sativa // Int. J. Mol. Sci. 2013. V. 14. P. 8719. https://doi.org/10.3390/ijms14058719
- Hull A.K., Criscuolo C.J., Mett V., Groen H., Steeman W., Westra H., Chapman G., Legutki B., Baillie L., Yusibov V. Human-derived, plant-produced monoclonal antibody for the treatment of anthrax // Vacc. 2005. V. 23. P. 2082. https://doi.org/10.1016/j.vaccine.2005.01.013
- Capell T., Twyman R.M., Armario-Najera V., Ma K.C.M., Schillberg S., Christou P. Potential applications of plant biotechnology against SARSCoV-2 // Trends Plant Sci. 2020. V. 25. P. 635. https://doi.org/10.1016/j.tplants.2020.04.009
- Rosales-Mendoza S., Márquez-Escobar V.A., Gonzalez-Ortega O., Nieto-Gomez R., Arevalo-Villalobos J.I. What does plant-based vaccine technology offer to the fight against COVID-19? // Vaccines. 2020. V. 14. P. 183. https://doi.org/10.3390/vaccines8020183
- Ramessar K., Sabalza M., Miralpeix B., Capell T., Christou P. Can microbicides turn the tide against HIV? // Curr. Pharm. Des. 2010. V. 16. P. 468. https://doi.org/10.2174/138161210790232202
- Ma J.K., Christou P., Chikwamba R., Haydon H., Paul M., Ferrer M.P., Ramalingam S., Rech E., Rybicki E., Wigdorowitz A., Yang D.C., Thangaraj H. Realising the value of plant molecular pharming to benefit the poor in developing countries and emerging economies // Plant Biotechnol. J. 2013. V. 11. P. 1029. https://doi.org/10.1111/pbi.12127
- Kaplon H., Reichert J. M. Antibodies to watch in 2019 // MAbs. 2019. V. 11. P. 219. https://doi.org/10.1080/19420862.2018.1556465
- Tokuhara D., Alvarez B., Mejima M., Hiroiwa T., Takahashi Y., Kurokawa S., Kuroda M., Oyama M., Kozuka-Hata H., Nochi T., Sagara H., Aladin F., Marcotte H., Frenken L.G., Iturriza-Gomara M. et al. Rice-based oral antibody fragment prophylaxis and therapy against rotavirus infection // J. Clin. Invest. 2013. V. 123. P. 3829. https://doi.org/10.1172/JCI70266
- Esqueda A., Jugler C., Chen Q. Design and expression of a bispecific antibody against dengue and chikungunya virus in plants // Methods Enzymol. 2021. V. 660. P. 223. https://doi.org/10.1016/bs.mie.2021.05.00
- Arntzen C. Plant-made pharmaceuticals: from ‘Edible Vaccines’ to Ebola therapeutics // Plant Biotechnol. J. 2015. V. 13. P. 1013. https://doi.org/10.1111/pbi.12460
- Zeitlin L., Bohorov O., Bohorova N., Hiatt A., Kim D., Pauly M., Velasco J., Whaley K., Barnard D., Bates J., Crowe J., Piedra P., Gilbert B. Prophylactic and therapeutic testing of Nicotiana-derived RSV-neutralizing human monoclonal antibodies in the cotton rat model // MAbs. 2013. V. 5. P. 263. https://doi.org/10.4161/mabs.23281
- Brodzik R., Glogowska M., Bandurska K., Okulicz M., Deka D., Ko K., van der Linden J., Leusen J.H.W., Pogrebnyak N., Golovkin M., Steplewski Z., Koprowski H. Plant-derived Anti-Lewis Y mAb exhibits biological activities for efficient immunotherapy against human cancer cells // Proc. Natl. Acad. Sci. USA. 2006. V. 6. P. 8804. https://doi.org/10.1073/pnas.0603043103
- Buyel J.F., Twyman R.M., Fischer R. Very-large-scale production of antibodies in plants: the biologization of manufacturing //Biotechnol. Adv. 2017. V. 35. P. 458. https://doi.org/10.1016/j.biotechadv.2017.03.011
- Oluwayelu D.O., Adebiyi A.I. Plantibodies in human and animal health: a review // Afr. Health Sci. 2016. V. 16. P. 640. https://doi.org/10.4314/ahs.v16i2.35
- Houdelet M., Galinski A., Holland T., Wenzel K., Schillberg S., Buyel J. F. Animal component-free Agrobacterium tumefaciens cultivation media for better GMP-compliance increases biomass yield and pharmaceutical protein expression in Nicotiana benthamiana // Biotechnol. J. 2017. V. 12. Art. 1600721. https://doi.org/10.1002/biot.201600721
- Edgue G., Twyman R. M., Beiss V., Fischer R., Sack M. Antibodies from plants for bionanomaterials // Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2017. V. 9. P. 11. https://doi.org/10.1002/wnan.1462
- Kopertekh L., Schiemann J. Transient production of recombinant pharmaceutical proteins in plants: evolution and perspectives // Curr. Med. Chem. 2019. V. 26. P. 365. https://doi.org/10.2174/0929867324666170718114724
- Mason W. P. Bevacizumab in recurrent glioblastoma: five informative patient scenarios // Can. J. Neurol. Sci. 2015. V. 42. P. 149. https://doi.org/10.1017/cjn.2015.21
- Yang X., Li J., Chen L., Louzada E. S., He J., Yu W. Stable mitotic inheritance of rice minichromosomes in cell suspension cultures // Plant Cell Rep. 2015. V. 34. P. 929. https://doi.org/10.1007/s00299-015-1755-3
- Corbin J. M., Hashimoto B. I., Karuppanan, K., Kyser Z. R., Wu L., Roberts B. A., Noe A.R., Rodriguez R.L., McDonald K.A., Nandi S. Semicontinuous bioreactor production of recombinant butyrylcholinesterase in transgenic rice cell suspension cultures // Front. Plant Sci. 2016. V. 7. P. 412. https://doi.org/10.3389/fpls.2016.00412
- Knödler M., Frank K., Kerpen L., Buyel J.F. Design, optimization, production and activity testing of recombinant immunotoxins expressed in plants and plant cells for the treatment of monocytic leukemia // Bioengineered. 2023. V. 14. Art. 2244235. https://doi.org/10.1080/21655979.2023.2244235
- Rademacher T., Sack M., Blessing D., Fischer R., Holland T., Buyel J.F. Plant cell packs: a scalable platform for recombinant protein production and metabolic engineering // Plant Biotechnol. J. 2019. V. 17. P. 1560. https://doi.org/10.1111/pbi.13081
- Gengenbach B.B., Keil L.L., Opdensteinen P., Müschen C.R., Melmer G., Lentzen H., Bührmann J., Buyel J.F. Comparison of microbial and transient expression (tobacco plants and plant-cell packs) for the production and purification of the anti-cancer mistletoe lectin viscumin // Biotechnol. Bioeng. 2019. V. 116. P. 2236. https://doi.org/10.1002/bit.27076
- Ou J., Si Y., Goh K., Yasui N., Guo Y., Song J., Wang L., Jaskula-Sztul R., Fan J., Zhou L., Liu R., Liu X. Bioprocess development of antibody-drug conjugate production for cancer treatment // PLOS One. 2018. V. 13. Art. e0206246. https://doi.org/10.1371/journal.pone.0206246
- Buyel J.F. Plants as sources of natural and recombinant anti-cancer agents // Biotechnol. Adv. 2018. V. 36. P. 506. https://doi.org/10.1016/j.biotechadv.2018.02.002
- Francisco J.A., Gawlak S.L., Miller M., Bathe J., Russell D., Chace D., Mixan B., Zhao L., Fell H. P., Siegall C.B. Expression and characterization of bryodin 1 and a bryodin 1-based single-chain immunotoxin from tobacco cell culture // Bioconjugate Chem. 1997. V. 8. P. 708. https://doi.org/10.1021/bc970107k
- Mirzaee M., Jalali-Javaran M., Moieni A., Zeinali S., Behdani M. Expression of VGRNb-PE immunotoxin in transplastomic lettuce (Lactuca sativa L.) // Plant Mol. Biol. 2018. V. 97. P. 103. https://doi.org/10.1007/s11103-018-0726-9
- Cui L., Peng H., Zhang R., Chen Y., Zhao L., Tang K. Recombinant hHscFv-RC-RNase protein derived from transgenic tobacco acts as a bifunctional molecular complex against hepatocellular carcinoma // Biotechnol. Appl. Biochem. 59. 2012. P. 323. https://doi.org/10.1002/bab.1039
Supplementary files
