N-гликозилирование растительных белков
- Authors: Ларская И.А.1, Федина Е.О.1, Микшина П.В.1, Горшкова Т.А.1,2
-
Affiliations:
- Казанский институт биохимии и биофизики – обособленное структурное подразделение Федерального исследовательского центра “Казанский научный центр Российской академии наук”
- Институт физиологии Федерального исследовательского центра Коми научного центра Уральского отделения Российской академии наук
- Issue: Vol 71, No 2 (2024)
- Pages: 149-165
- Section: ОБЗОРЫ
- URL: https://journals.rcsi.science/0015-3303/article/view/261882
- DOI: https://doi.org/10.31857/S0015330324020036
- EDN: https://elibrary.ru/OBVBYR
- ID: 261882
Cite item
Abstract
N-гликозилирование является одной из самых распространенных и наиболее сложной среди пост трансляционных модификаций белков, которая играет ключевую роль в их укладке, контроле качества и деградации, а также оказывает влияние на активность, транспорт, локализацию и взаимодействие с другими белками. Более того, N-гликозилирование модулирует многие важные биологические процессы, включая рост, развитие, морфогенез, и участвует в процессах передачи стрессовых сигналов. При этом если роль N-гликозилирования в целом и функции отдельных N-гликанов на клетках млекопитающих хорошо изучены, исследования этого процесса в растениях значительно отстают. В обзоре обобщена имеющаяся информация о процессе N-гликозилирования белков, описан путь биосинтеза и функции различных N-гликанов в растениях в контексте роста, развития и влияния внешних факторов. Делается акцент на основных моментах, которые необходимо учитывать при исследовании этого процесса в растениях и обсуждаются возможности практического использования полученных знаний для гликоинжиниринга растительных белков.
Full Text

About the authors
И. А. Ларская
Казанский институт биохимии и биофизики – обособленное структурное подразделение Федерального исследовательского центра “Казанский научный центр Российской академии наук”
Author for correspondence.
Email: pzl@mail.ru
Russian Federation, Казань
Е. О. Федина
Казанский институт биохимии и биофизики – обособленное структурное подразделение Федерального исследовательского центра “Казанский научный центр Российской академии наук”
Email: pzl@mail.ru
Russian Federation, Казань
П. В. Микшина
Казанский институт биохимии и биофизики – обособленное структурное подразделение Федерального исследовательского центра “Казанский научный центр Российской академии наук”
Email: pzl@mail.ru
Russian Federation, Казань
Т. А. Горшкова
Казанский институт биохимии и биофизики – обособленное структурное подразделение Федерального исследовательского центра “Казанский научный центр Российской академии наук”; Институт физиологии Федерального исследовательского центра Коми научного центра Уральского отделения Российской академии наук
Email: pzl@mail.ru
Russian Federation, Казань; Сыктывкар
References
- Hashiguchi A., Komatsu S. Impact of post-translational modifications of crop proteins under abiotic stress // Proteomes. 2016. V. 4. P. 42. https://doi.org/10.3390/proteomes4040042
- Chang Y., Zhu D., Duan W., Deng X., Zhang J., Ye X., Yan Y. Plasma membrane N-glycoproteome analysis of wheat seedling leaves under drought stress // Int. J. Biol. Macromol. 2021. V. 193. P. 1541. https://doi.org/10.1016/j.ijbiomac.2021.10.217
- Muleya V., Lois L.M., Chahtane H., Thomas L., Chiapello M., Marondedze C. (De)activation (ir)reversibly or degradation: dynamics of post-translational protein modifications in plants // Life. 2022. V. 12. P. 324. https://doi.org/10.3390/life12020324
- Nguema-Ona E., Vicre-Gibouin M., Gotte M., Plancot B., Lerouge P., Bardor M., Driouich A. Cell wall O-glycoproteins and N-glycoproteins: aspects of biosynthesis and function // Front. Plant Sci. 2014. V. 5. P. 499. https://doi.org/10.3389/fpls.2014.00499
- Nagashima Y., von Schaewen A., Koiwa H. Function of N-glycosylation in plants // Plant Sci. 2018. V. 274. P. 70. https://doi.org/10.1016/j.plantsci.2018.05.007
- Mellquist J., Kasturi L., Spitalnik S., Shakin-Eshleman S. The amino acid following an Asn-X-Ser/Thr sequon is an important determinant of N-linked core glycosylation efficiency // Biochem. 1998. V. 37. P. 6833. https://doi.org/10.1021/bi972217k
- Shakin-Eshleman S., Spitalnik S., Kasturi L. The amino acid at the X position of an Asn-X-Ser sequon is an important determinant of N-linked core-glycosylation efficiency // J. Biol. Chem. 1996. V. 271. P. 6363. https://doi.org/10.1074/jbc.271.11.6363
- Hebert D., Lamriben L., Powers E., Kelly J. The intrinsic and extrinsic effects of N-linked glycans on glycoproteostasis // Nat. Chem. Biol. 2014. V. 10. P. 902. https://doi.org/10.1038/nchembio.1651
- Toustou С., Walet-Balieu M.-L., Kiefer-Meyer M.-C., Houdou M., Lerouge P., Foulquier F. BardorM. Towards understanding the extensive diversity of protein N-glycan structures in eukaryotes // Biol. Rev. 2022. V. 97. P. 732. https://doi.org/10.1111/brv.12820
- Kang J.S., Frank J., Kang C.H., Kajiura H., Vikram M., Ueda A., Kim S., Bahk J.D., Triplett B., Fujiyama K., Lee S.Y., von Schaewen A., Koiwa H. Salt tolerance of Arabidopsis thaliana requires maturation of N-glycosylated proteins in the Golgi apparatus // Proc. Natl. Acad. Sci. U.S.A. 2008. V. 105. P. 5933. https://doi.org/10.1073/pnas.0800237105
- Lannoo N., Van Damme E.J.M. Review/N-glycans: the making of a varied toolbox // Plant Sci. 2015. V. 239. P. 67. https://doi.org/10.1016/j.plantsci.2015.06.023
- Morales-Quintana L., Méndez-Yáñez A. α-Mannosidase and β-D-N-acetylhexosaminidase outside the wall: partner exoglycosidases involved in fruit ripening process // Plant Mol. Biol. 2023. V. 112. P. 107. https://doi.org/10.1007/s11103-023-01356-2
- Jiao Q.-S., Niu G.-T., Wang F.-F., Dong J.-Y., Chen T.-S., Zhou C.-F., Hong Z. N-glycosylation regulates photosynthetic efficiency of Arabidopsis thaliana // Photosynthetica. 2020. V. 58. P. 72. https://doi.org/10.32615/ps.2019.153
- Frank M., Kaulfürst-Soboll H., Fischer K., von Schaewen A. Complex-type N-glycans influence the root hair landscape of Arabidopsis seedlings by altering the auxin output // Front. Plant Sci. 2021. V. 12. P. 635714. https://doi.org/10.3389/fpls.2021.635714
- Kaulfürst-Soboll H., Mertens-Beer M., Brehler R., Albert M., von Schaewen A. Complex N-glycans are important for normal fruit ripening and seed development in tomato // Front. Plant Sci. 2021. V. 12. P. 635962. https://doi.org/10.3389/fpls.2021.635962
- Jansing J., Sack M., Augustine S.M., Fischer R., Bortesi L. CRISPR/Cas9-mediated knockout of six glycosyltransferase genes in Nicotiana benthamiana for the production of recombinant proteins lacking b-1,2-xylose and core a-1,3-fucose // Plant Biotechnol. J. 2019. V. 17. P. 350. https://doi.org/10.1111/pbi.12981
- Herman X., Far J., Courtoy A., Bouhon L., Quinton L., De Pauw E., Chaumont F., Navarre C. Inactivation of N-acetylglucosaminyltransferase I and α1,3-fucosyltransferase genes in Nicotiana tabacum BY-2 cells results in glycoproteins with highly homogeneous, high-mannose N-glycans // Front. Plant Sci. 2021. V. 12. P. 634023. https://doi.org/10.3389/fpls.2021.634023
- Fanata W.I., Lee K.H., Son B.H., Yoo J.Y., Harmoko R., Ko K.S., Ramasamy N.K., Kim K.H., Oh D.-B., Jung H.S., Kim J-Y., Lee S.Y., Lee K.O. N-glycan maturation is crucial for cytokinin-mediated development and cellulose synthesis in Oryza sativa // Plant J. 2013. V. 73. P. 966. https://doi.org/10.1111/tpj.12087
- Harmoko R., Yoo J.Y., Ko K.S., Ramasamy N.K., Hwang B.Y., Lee E.J., Kim H.S., Lee K.J., Oh D.-B., Kim D.-J., Lee S., Li Y., Lee S.Y., Lee K.O. N-glycan containing a core α1,3-fucose residue is required for basipetal auxin transport and gravitropic response in rice (Oryza sativa) // New Phytol. 2016. V. 212. P. 108. https://doi.org/10.1111/nph.14031
- Strasser R. Recent developments in deciphering the biological role of plant complex N-glycans // Front. Plant Sci. 2022. V. 13. P. 897549. https://doi.org/10.3389/fpls.2022.897549
- Strasser R. Plant protein glycosylation // Glycobiology. 2016. V. 26. P. 926. https://doi.org/10.1093/glycob/cww023
- Strasser R., Altmann F., Mach L., Glössl J., Steinkellner H. Generation of Arabidopsis thaliana plants with complex N-glycans lacking b-1,2-linked xylose and core a-1,3-linked fucose // FEBS Lett. 2004. V. 561. P. 132. https://doi.org/10.1016/S0014-5793(04)00150-4
- Johnson K.D., Chrispeels M.J. Substrate specificities of N-acetylglucosaminyl-, fucosyl-, and xylosyltransferases that modify glycoproteins in the Golgi apparatus of bean cotyledon // Plant Physiol. 1987. V. 84. P. 1301. https://doi.org/10.1104/pp.84.4.1301
- Beihammer G., Maresch D., Altmann F., Van Damme E.J.M., Strasser R. Lewis A glycans are present on proteins involved in cell wall biosynthesis and appear evolutionarily conserved among natural Arabidopsis thaliana accessions // Front. Plant Sci. 2021. V. 12. P. 630891. https://doi.org/10.3389/fpls.2021.630891
- Fitchette-Lainé A.C., Gomord V., Cabanes M., Michalski J-C., Saint Macary M., Foucher B., Cavelier B., Hawes C., Lerouge P., Faye L. N-glycans harboring the Lewis a epitope are expressed at the surface of plant cells // Plant J. 1997. V. 12. P. 1411. https://doi.org/10.1046/j.1365-313x.1997.12061411.x
- Ruiz-May E., Kim S.-J., Brandizzi F., Rose J.K.C. The secreted plant N-glycoproteome and associated secretory pathways // Front. Plant Sci. 2012. V. 3. P. 117. https://doi.org/10.3389/fpls.2012.00117
- Liebminger E., Veit C., Pabst M., Batoux M., Zipfel C., Altmann F., Mach L., Strasser R. Beta-N-acetylhexosaminidases HEXO1 and HEXO3 are responsible for the formation of paucimannosidic N-glycans in Arabidopsis thaliana// J. Biol. Chem. 2011. V. 286. P. 10793. https://doi.org/10.1074/jbc.M110.178020
- Melo N.S., Nimtz M., Conradt H.S., Fevereiro P.S., Costa J. Identification of the human Lewis (a) carbohydrate motif in a secretory peroxidase from a plant cell suspension culture (Vaccinium myrtillus L.) // FEBS Lett. 1997. V. 415. P. 186. https://doi.org/10.1016/s0014-5793(97)01121-6
- Gomord V., Fitchette A.-C., Menu-Bouaouiche L., Saint-Jore-Dupas C., Plasson C., Michaud D., Faye L. Plant-specific glycosylation patterns in the context of therapeutic protein production // Plant Biotechnol. J. 2010. V. 8. P. 564. https://doi.org/10.1111/j.1467-7652.2009.00497.x
- Lerouge P., Cabanes-Macheteau M., Rayon C., Fischette-Laine A.-C., Gomord V., Faye L. N-Glycoprotein biosynthesis in plants: recent developments and future trends // Plant Mol. Biol. 1998. V. 38. P. 31. https://doi.org/10.1023/A:1006012005654
- Fitchette A.C., Cabanes-Macheteau M., Marvin B., Satiat-Jeunemaitre B., Gomord V., Lerouge P., Faye L., Hawes C. Biosynthesis and immunolocalization of Lewis a-containing N-glycans in the plant cells // Plant Physiol. 1999. V. 121. P. 333. https://doi.org/10.1104/pp.121.2.333
- Gutternigg M., Kretschmer-Lubich D., Paschinger K., Rendi,ć D., Hader J., Geier P., Ranftl R., Jantsch V., Lochnit G., Wilson I.B.H. Biosynthesis of truncated N-linked oligosaccharides results from non-orthologous hexosaminidase-mediated mechanisms in nematodes, plants and insects // J. Biol. Chem. 2007. V. 282. P. 27825. https://doi.org/10.1074/jbc.M704235200
- Zeng W., Ford K.L., Bacic A., Heazlewood J.L. N-linked glycan micro-heterogeneity in glycoproteins of Arabidopsis // Mol. Cell. Proteomics. 2018. V. 17. P. 413. https://doi.org/10.1074/mcp.RA117.000165
- Wang X., Deng X., Zhu D., Duan W., Zhang J., Yan Y. N-linked glycoproteome analysis reveals central glycosylated proteins involved in wheat early seedling growth // Plant Physiol. Biochem. 2021. V. 163. P. 327. https://doi.org/10.1016/j.plaphy.2021.04.009
- Zhang X., Tang H., Du H., Liu Z., Bao Z., Shi Q. Comparative N-glycoproteome analysis provides novel insights into the regulation mechanism in tomato (Solanum lycopersicum L.) during fruit ripening process // Plant Sci. 2020. V. 293. P. 110413. https://doi.org/10.1016/j.plantsci.2020.110413
- Yoo J.Y., Ko K.S., Vu B.N., Lee Y.E., Yoon S.H., Pham T.T., Kim J-Y., Lim J-M., Kang Y.J. Hong J.C., Lee K.O. N-acetylglucosaminyltransferase II is involved in plant growth and development under stress conditions // Front. Plant Sci. 2021. V. 12. P. 761064. https://doi.org/10.3389/fpls.2021.761064
- Kang B.S., Baek J.H., Macoy D.M., Chakraborty R., Cha J.-Y., Hwang D.-J., Lee Y.H., Lee S.Y., Kim W.Y., Kim M.G. N-glycosylation process in both ER and Golgi plays pivotal role in plant immunity // J. Plant Biol. 2015. V. 58. P. 374. https://doi.org/10.1007/s12374-015-0197-3
- Lin B., Qing X., Liao J., Zhuo K. Role of protein glycosylation in host-pathogen interaction // Cells. 2020. V. 9. P. 1022. https://doi.org/10.3390/cells9041022
- Mustafa G., Komatsu S. Quantitative proteomics reveals the effect of protein glycosylation in soybean root under flooding stress // Front. Plant Sci. 2014. V. 5. P. 627. https://doi.org/10.3389/fpls.2014.00627
- Zhang X., Tang H., Du H., Bao Z., Shi Q. Sugar metabolic and N-glycosylated profiles unveil the regulatory mechanism of tomato quality under salt stress // Environ. Exp. Bot. 2020. V. 177. P. 104145. https://doi.org/10.1016/j.envexpbot.2020.104145
- Zhang L., Xu Y., Yao H., Xie L., Yang P. Boronic acid functionalized core–satellite composite nanoparticles for advanced enrichment of glycopeptides and glycoproteins // Chem. Eur. J. 2009. V. 15. P. 10158. https://doi.org/10.1002/chem.200901347
- Beihammer G., Romero-Pérez A., Maresch D., Figl R., Mócsai R., Grünwald-Gruber C., Altmann F., Van Damme E.J.M., Strasser R. Pseudomonas syringae DC3000 infection increases glucosylated N-glycans in Arabidopsis thaliana // Glycoconjugate. J. 2023. V. 40. P. 97. https://doi.org/10.1007/s10719-022-10084-6
- Trempel F., Kajiura H., Ranf S., Grimmer J., Westphal L., Zipfel C., Scheel D., Fujiyama K., Lee J. Altered glycosylation of exported proteins, including surface immune receptors, compromises calcium and downstream signaling responses to microbe-associated molecular patterns in Arabidopsis thaliana // BMC Plant Biol. 2016. V. 16. P. 31. https://doi.org/10.1186/s12870-016-0718-3
- Haweker H., Rips S., Koiwa H., Salomon S., Saijo Y., Chinchilla D., Robatzek S., von Schaewen A. Pattern recognition receptors require N-glycosylation to mediate plant immunity // J. Biol. Chem. 2010. V. 285. P. 4629. https://doi.org/10.1074/jbc.M109.063073
- Joshi R., Paul M., Kumar A., Pandey D. Role of calreticulin in biotic and abiotic stress signalling and tolerance mechanisms in plants // Gene. 2019. V. 714. P. 144004. https://doi.org/10.1016/j.gene.2019.144004
- Matsukawa M., Shibata Y., Ohtsu M., Mizutani A., Mori H., Wang P., Ojika M., Kawakita K., Takemoto D. Nicotiana benthamiana calreticul in 3a is required for the ethylene mediated production of phytoalexins and disease resistance against oomycete pathogen Phytophthora infestans // Mol. Plant-Microbe Interact. 2013. V. 26. P. 880. https://doi.org/10.1094/MPMI-12-12-0301-R
- Takano S., Matsuda S., Funabiki A., Furukawa J., Yamauchi T., Tokuji Y., Nakazono M., Shinohara Y., Takamure I., Kato K. The rice RCN11 gene encodes β1,2-xylosyltransferase and is required for plant responses to abiotic stresses and phytohormones // Plant Sci. 2015. V. 236. P. 75. https://doi.org/10.1016/j.plantsci.2015.03.022
- Veit C., König J., Altmann F., Strasser R. Processing of the terminal alpha-1,2-linked mannose residues from oligomannosidic N-glycans is critical for proper root growth // Front. Plant Sci. 2018. V. 9. P. 1807. https://doi.org/10.3389/fpls.2018.01807
- Liu C., Niu G., Zhang H., Sun Y., Sun S., Yu F., Lu S., Yang Y., Li J., Hong Z. Trimming of N-glycans by the Golgi-localized a-1,2-mannosidases, MNS1 and MNS2, is crucial for maintaining RSW2 protein abundance during salt stress in Arabidopsis // Mol. Plant. 2018. V. 11. P. 678. https://doi.org/10.1016/j.molp.2018.01.006
- Sturm A., Van Kuik J.A., Vliegenthar J.F., Chrispeels M.J. Structure, position, and biosynthesis of the high mannose and the complex oligosaccharide side chains of the bean storage protein phaseolin // J. Biol. Chem. 1987. V. 262. P. 13392. https://doi.org/10.1016/S0021-9258(19)76439-4
- Kajiura H., Hiwasa-Tanase K., Ezura H., Fujiyama K. Effect of fruit maturation on N-glycosylation of plant-derived native and recombinant miraculin // Plant Physiol. Biochem. 2022. V. 178. P. 70. https://doi.org/10.1016/j.plaphy.2022.02.026
- Rips S., Bentley N., Jeong I.S., Welch J.L., von Schaewen A., Koiwa H. Multiple N-glycans cooperate in the subcellular targeting and functioning of Arabidopsis KORRIGAN1 // Plant Cell. 2014. V. 26. P. 3792. https://doi.org/10.1105/tpc.114.129718
- Rubin E., Ben-Dor S., Sharon N. Biases and complex patterns in the residues flanking protein N-glycosylation site // Glycobiology. 2004. V. 14. P. 95. https://doi.org/10.1093/glycob/cwh004
- Dwek R.A. Glycobiology: towards understanding the function of sugars // Chem. Rev. 1996. V. 96. P. 683. https://doi.org/10.1021/cr940283b
- Petrescu A.J., Milac A.L., Petrescu S.M., Dwek R.A., Wormald M.R. Statistical analysis of the protein environment of N-glycosylation sites: implications for occupancy, structure, and folding // Glycobiology. 2004. V. 14. P. 103. https://doi.org/10.1093/glycob/cwh008
- Zielinska D.F., Gnad F., Schropp K., Wisniewski J.R., Mann M. Mapping N-glycosylation sites across seven evolutionarily distant species reveals a divergent substrate proteome despite a common core machinery // Mol. Cell. 2012. V. 46. P. 542. https://doi.org/10.1016/j.molcel.2012.04.031
- Zielinska D.F., Gnad F., Wisniewski J.R., Mann M. Precision mapping of an in vivo N-glycoproteome reveals rigid topological and sequence constraints // Cell. 2010. V. 141. P. 897. https://doi.org/10.1016/j.cell.2010.04.012
- Hofbauer A., Stoger E. Subcellular accumulation and modification of pharmaceutical proteins in different plant tissues // Curr. Pharm. Des. 2013. V. 19. P. 5495. https://doi.org/10.2174/1381612811319310005
- Ko K., Ahn M.-H., Song M., Choo Y.-K., Kim H.S., Ko K., Joung H. Glyco-engineering of biotherapeutic proteins in plants // Mol. Cells. 2008. V. 25. Р. 494.
- Montero-Morales L., Steinkellner H. Advanced plant-based glycan engineering // Front. Bioeng. Biotechnol. 2018. V. 6. P. 81. https://doi.org/10.3389/fbioe.2018.00081
- Dammen-Brower K., Epler P., Zhu S., Bernstein Z.J., Stabach P.R., Braddock D.T., Spangler J.B., Yarema K.J. Strategies for glycoengineering therapeutic proteins // Front. Chem. 2022. V. 10. P. 863118. https://doi.org/10.3389/fchem.2022.863118
- Fang Z., Qin H., Mao J., Wang Z., Zhang N., Wang Y., Liu L., Nie Y., Dong M., Ye M. Glyco-Decipher enables glycan database-independent peptide matching and in-depth characterization of site-specific N-glycosylation // Nat. Commun. 2022. V. 13. P. 1900. https://doi.org/10.1038/s41467-022-29530-y
- Haslam S.M., Freedberg D.I., Mulloy B., Dell A., Stanley P., Prestegard J.H. Structural analysis of glycans // Essentials of Glycobiology [Internet] 4th ed./ Eds. A. Varki et al. Cold Spring Harbor (NY): Cold Spring Harbor Laboratory Press. 2022. Chapter 50.
- Pedrazzini E., Caprera A., Fojadelli I., Stella A., Rocchetti A., Bassin B., Martinoia E., Vitale A. The Arabidopsis tonoplast is almost devoid of glycoproteins with complex N-glycans, unlike the rat lysosomal membrane // J. Exp. Bot. 2016.V. 67. P. 1769. https://doi.org/10.1093/jxb/erv567
- Elbers I.J., Stoopen G.M., Bakker H., Stevens L.H., Bardor M., Molthoff J.W., Jordi W.J., Bosch D., Lommen A. Influence of growth conditions and developmental stage on N-glycan heterogeneity of transgenic immunoglobulin G and endogenous proteins in tobacco leaves // Plant Physiol. 2001. V. 126. P. 1314. https://doi.org/10.1104/pp.126.3.1314
- Lim C.-Y., Lee K.J., Oh D.-B., Ko K. Effect of the developmental stage and tissue position on the expression and glycosylation of recombinant glycoprotein GA733-FcK in transgenic plants // Front. Plant Sci. 2015. V. 5. P. 2014. https://doi.org/103389/fpls.2014.00778
- Arcalis E., Stadlmann J., Marcel S., Drakakaki G., Winter V., Rodriguez J., Fischer R., Altmann F., Stoger E. The changing fate of a secretory glycoprotein in developing maize endosperm // Plant Physiol. 2010. V. 153. P. 693. https://doi.org/10.1104/pp.109.152363
- Pedersen C.T., Loke I., Lorentzen A., Wolf S., Kamble M., Kristensen S.K., Munch D., Radutoiu S., Spillner E., Roepstorff P., Thaysen-Andersen M., Stougaard J., Dam S. N-glycan maturation mutants in Lotus japonicus for basic and applied glycoprotein research // Plant J. 2017. V. 91. P. 394. https://doi.org/10.1111/tpj.13570
- Shin Y.J., Castilho A., Dicker M., Sadio F., Vavra U., Grunwald-Gruber C., Kwon T.H., Altmann F., Steinkellner H., Strasser R. Reduced paucimannosidic N-glycan formation by suppression of a specific beta-hexosaminidase from Nicotiana benthamiana // Plant Biotechnol. J. 2017. V. 15. P. 197. https://doi.org/10.1111/pbi.12602
- Lattova E., Brabcova A., Bartova V., Potesil D., Barta J., Zdrahal Z. N-glycome profiling of patatins from different potato species of Solanum genus // J. Agric. Food Chem. 2015. V. 63. P. 3243. https://doi.org/10.1021/acs.jafc.5b00426
- Leonard R., Kolarisch D., Paschinger K., Altmann F., Wilson I.B.H. A genetic and structural analysis of the N-glycosylation capabilities of rice and other monocotyledons // Plant Mol. Biol. 2004. V. 55. P. 631. https://doi.org/10.1007/s11103-004-1558-3
- Wilson I., Zeleny R., Kolarich D., Staudacher E., Stroop C., Kamerling J., Altmann F. Analysis of Asn-linked glycans from vegetable foodstuffs: widespread occurrence of Lewis a, core α1,3-linked fucose and xylose substitutions // Glycobiology. 2001. V. 11. P. 261. https://doi.org/10.1093/glycob/11.4.261
- Karki U., Fang H., Guo W., Unnold-Cofre C., Xu J. Cellular engineering of plant cells for improved therapeutic protein production // Plant Cell Rep. 2021. V. 40. P. 1087. https://doi.org/10.1007/s00299-021-02693-6
- Van Beers M.M.C., Bardor M. Minimizing immunogenicity of biopharmaceuticals by controlling critical quality attributes of proteins // Biotechnol. J. 2012. V. 7. P. 1473. http://dx.doi.org/10.1002/biot.201200065
- De Coninck T., Gistelinck K., Janse van Rensburg H.C., Van den Ende W., Van Damme E.J.M. Sweet modifications modulate plant development // Biomolecules. 2021. V. 11. P. 756. https://doi.org/10.3390/biom11050756
- Qin C., Li Y., Gan J., Wang W., Zhang H., Liu Y., Wu P. OsDGL1, a homolog of an oligosaccharyltransferase complex subunit, is involved in N-glycosylation and root development in rice // Plant Cell Physiol. 2013. V. 54. P. 129. https://doi.org/10.1093/pcp/pcs159
- Lerouxel O., Mouille G., Andeme-Onzighi C., Bruyant M.-P., Seveno M., Loutelier-Bourhis C., Driouich A., Hofte H., Lerouge P. Mutants in DEFECTIVE GLYCOSYLATION, an Arabidopsis homolog of an oligosaccharyltransferase complex subunit, show protein under glycosylation and defects in cell differentiation and growth // Plant J. 2005. V. 42. P. 455. https://doi.org/10.1111/j.1365-313X.2005.02392.x
- Wang S.K., Xu Y.X., Li Z.L., Zhang S.N., Lim J.-M., Lee K.O., Li C.Y., Qian Q., Jiang D.A., Qi Y.H. OsMOGS is required for N-glycan formation and auxin-mediated root development in rice (Oryza sativa L.) // Plant J. 2014. V. 78. P. 632. https://doi.org/10.1111/tpj.12497
- Gillmor C.S., Poindexter P., Lorieau J., Palcic M.M., Somerville C. α-Glucosidase I is required for cellulose biosynthesis and morphogenesis in Arabidopsis // J. Cell Biol. 2002. V. 156. P. 1003. https://doi.org/10.1083/jcb.200111093
- Limkul J., Iizuka S., Sato Y., Misaki R., Ohashi T., Fujiyama K. The production of human glucocerebrosidase in glyco-engineered Nicotiana benthamiana plants // Plant Biotechnol. J. 2016. V. 14. P. 1682. https://doi.org/10.1111/pbi.12529
- Strasser R., Stadlmann J., Schähs M., Stiegler G., Quendler H., Mach L., Glössl J., Weterings K., Pabst M., Steinkellner H. Generation of glyco-engineered Nicotiana benthamiana for the production of monoclonal antibodies with a homogeneous human-like N-glycan structure // Plant Biotechnol. J. 2008. V. 6. P. 392. https://doi.org/10.1111/j.1467-7652.2008.00330.x
- Rozov S.M., Permyakova N.V., Deineko E.V. Main strategies of plant expression system glycoengineering for producing humanized recombinant pharmaceutical proteins // Biochemistry (Moscow). 2018. V. 83. P. 215.
- Gerszberg A., Hnatuszko-Konka K. Compendium on food crop plants as a platform for pharmaceutical protein production // Int. J. Mol. Sci. 2022. V. 23. P. 3236. https://doi.org/10.3390/ijms23063236
- Margolin E., Verbeek M., de Moor W., Chapman R., Meyers A., Schäfer G., Williamson A‐L., Rybicki E. Investigating constraints along the plant secretory pathway to improve production of a SARS‐CoV‐2 spike vaccine candidate // Front. Plant Sci. 2022. V. 12. P. 798822. https://doi.org/10.3389/fpls.2021.798822
- Shin Y.-J., König-Beihammer J., Vavra U., Schwestka J., Kienzl N.F., Klausberger M., Laurent E., Grünwald-Gruber C., Vierlinger K., Hofner M., Margolin E., Weinhäusel A., Stöger E., Mach L., Strasser R.N-glycosylation of the SARS-CoV-2 receptor binding domain is important for functional expression in plants // Front. Plant Sci. 2021. V. 12. P. 689104. https://doi.org/10.3389/fpls.2021.689104
- Liu H., Timko M.P. Improving protein quantity and quality – the next level of plant molecular farming // Int. J. Mol. Sci. 2022. V. 23. P. 1326. https://doi.org/10.3390/ijms23031326
- Parsons J., Altmann F., Arrenberg C.K., Koprivova A., Beike A.K., Stemmer C., Gorr G., Reski R., Decker E.L. Moss-based production of asialo-erythropoietin devoid of Lewis A and other plant-typical carbohydrate determinants // Plant Biotechnol. J. 2002. V. 10. P. 851. https://doi.org/10.1111/j.1467-7652.2012.00704.x
- Castilho A., Gattinger P., Grass J., Jez J., Pabst M., Altmann F., Gorfer M., Strasser R., Steinkellner H. N-glycosylation engineering of plants for the biosynthesis of glycoproteins with bisected and branched complex N-glycans // Glycobiology. 2011. V. 21. P. 813. https://doi.org/10.1093/glycob/cwr009
- Nagels B., Van Damme E. J., Pabst M., Callewaert N., Weterings K. Production of complex multiantennary N-glycans in Nicotiana benthamiana plants // Plant Physiol. 2011. V. 155. P. 1103. https://doi.org/10.1104/pp.110.168773
- Schneider J., Castilho A., Pabst M., Altmann F., Gruber C., Strasser R., Gattinger P., Seifert G.J., Steinkellner H. Characterization of plants expressing the human beta1,4-galactosyltrasferase gene // Plant Physiol. Biochem. 2015. V. 92. P. 39. https://doi.org/10.1016/j.plaphy.2015.04.010
- Kallolimath S., Castilho A., Strasser R., Grunwald-Gruber C., Altmann F., Strubl S., Galuska C.E., Zlatina K., Galuska S.P., Werner S., Thiesler H., Werneburg S., Hildebrandt H., Gerardy-Schahn R., Steinkellner H. Engineering of complex protein sialylation in plants // Proc. Natl. Acad. Sci. U.S.A. 2016. V. 113. P. 9498. https://doi.org/10.1073/pnas.1604371113
- Esqueda A., Chen Q. Producing biologics with defined N-glycosylation in plants // Chemokine-glycosaminoglycan interactions: methods and protocols / Ed. Lucas A.R. Humana Press. 2023. V. 2597. P. 235. https://doi.org/10.1007/978-1-0716-2835-5_17
- Fang P., Ji Y., Oellerich T., Urlaub H., Pan K.-T. Strategies for proteome-wide quantification of glycosylation macro- and micro-heterogeneity // Int. J. Mol. Sci. 2022.V. 23. P. 1609. https://doi.org/10.3390/ijms23031609
- Jeong I.S., Lee S., Bonkhofer F., Tolley J., Fukudome A., Nagashima Y., May K., Rips S., Lee S.Y., Gallois P., Russell W.K., Jung H.S., von Schaewen A., Koiwa H. Purification and characterization of Arabidopsis thaliana oligosaccharyltransferase complexes from the native host: a protein super-expression system for structural studies // Plant J. 2018.V. 94. P. 131. https://doi.org/10.1111/tpj.13847
- Castilho A., Beihammer G., Pfeiffer C., Goritzer K., Montero-Morales L., Vavra U., Maresch D., Grunwald-Gruber C., Altmann F., Steinkellner H., Strasser R. An oligosacchyaryl transferase from Leishmania major increases the N-glycan occupancy on recombinant glycoproteins produced in Nicotiana benthamiana // Plant Biotechnol. J. 2018. V. 16. P. 1700. https://doi.org/10.1111/pbi.12906
- Vamvaka E., Twyman R.M., Murad A.M., Melnik S., Teh A.Y., Arcalis E., Altmann F., Stoger E., Rech E., Ma J.K., Christou P., Capell T. Rice endosperm produces an underglycosylated and potent form of the HIV-neutralizing monoclonal antibody 2G12 // Plant Biotechnol. J. 2016. V. 14. P. 97. https://doi.org/10.1111/pbi.12360
- Shen J.S., Busch A., Day T.S., Meng X.L., Yu C.I., Dabrowska-Schlepp P., Fode B., Niederkrüger H., Forni S., Chen S., Schiffmann R., Frischmuth T., Schaaf A. Mannose receptor-mediated delivery of moss-made α-galactosidase A efficiently corrects enzyme deficiency in Fabry mice // J. Inherit. Metab. Dis. 2016. V. 39. P. 293. https://doi.org/10.1007/s10545-015-9886-9.
- Sariyatun R., Kajiura H., Limkul J., Misaki R., Fujiyama K. Analysis of N-glycan profile of Arabidopsis alg3 cell culture // Plant Biotechnol. 2021. V. 38. P. 463. https://doi.org/10.5511/plantbiotechnology.21.1025a
- Margolin E., Oh Y.J., Verbeek M., Naude J., Ponndorf D., Meshcheriakova Y.A., Peyret H., van Diepen M.T., Chapman R., Meyers A.E., Lomonossoff G.P., Matoba N., Williamson A.L., Rybicki E.P. Co‐expression of human calreticulin significantly improves the production of HIV gp140 and other viral glycoproteins in plants // Plant Biotechnol. J. 2020. V. 18. P. 2109. https://doi.org/10.1111/pbi.13369
- Ruiz-May E., Thannhauser T.W., Zhang S., Rose J.K.C. Analytical technologies for identification and characterization of the plant N-glycoproteome // Front. Plant Sci. 2012. V. 3. P. 150. https://doi.org/10.3389/fpls.2012.00150
- Qin Sh., Qin S., Tian Z. Progresses in mass spectrometry-based plant N-glycomics and N-glycoproteomics // Int. J. Mass Spectrom. 2022. V. 481. P. 116917. https://doi.org/10.1016/j.ijms.2022.116917
- Trbojevic-Akmacic I., Lageveen-Kammeijer G.S.M., Heijs B., Petrovic T., Deris H., Wuhrer M., Lauc G. High-throughput glycomic methods // Chem. Rev. 2022. V. 122. P. 15865. https://doi.org/10.1021/acs.chemrev.1c01031
Supplementary files
