Генетические механизмы регуляции обновления клеток корневого чехлика у Arabidopsis thaliana L.
- Authors: Черенко В.А.1,2, Омельянчук Н.А.1, Землянская Е.В.1,2
-
Affiliations:
- Федеральное государственное бюджетное научное учреждение “Федеральный исследовательский центр Институт цитологии и генетики Сибирского отделения Российской академии наук”
- Федеральное государственное автономное образовательное учреждение высшего образования “Новосибирский национальный исследовательский государственный университет”
- Issue: Vol 71, No 2 (2024)
- Pages: 135-148
- Section: ОБЗОРЫ
- URL: https://journals.rcsi.science/0015-3303/article/view/261881
- DOI: https://doi.org/10.31857/S0015330324020024
- EDN: https://elibrary.ru/OBXANC
- ID: 261881
Cite item
Abstract
Синхронизация пространственно разобщенных процессов деления и потери клеток играет первостепенную роль в обновлении и поддержании структуры органов и тканей, но о генетических механизмах ее регуляции на данный момент известно очень немного. У растений быстрому обновлению подвержен корневой чехлик, который располагается на кончике корня, защищая от механических повреждений нишу стволовых клеток и выполняя ряд других важных функций. Несмотря на непрерывное поступление и дифференцировку дочерних клеток от деления инициалей (стволовых клеток), корневой чехлик не увеличивается в размерах благодаря регулярному удалению дифференцированных клеток на внешнем его конце. Для строгого поддержания постоянства размера корневого чехлика важно, чтобы деления стволовых клеток были синхронизированы с удалением клеток внешнего слоя. У Arabidopsis thaliana, модельного объекта генетики растений, корневой чехлик имеет очень простую упорядоченную структуру, а слущивание старых клеток происходит единым слоем, что делает этот вид удобной моделью для исследования механизмов регуляции обновления клеток корневого чехлика. В обзоре рассмотрено поддержание гомеостаза структуры и размера корневого чехлика у A. thaliana, обсуждены данные по генетическому контролю этого процесса и возможные перспективные направления дальнейших исследований в этой области.
Full Text

About the authors
В. А. Черенко
Федеральное государственное бюджетное научное учреждение “Федеральный исследовательский центр Институт цитологии и генетики Сибирского отделения Российской академии наук”; Федеральное государственное автономное образовательное учреждение высшего образования “Новосибирский национальный исследовательский государственный университет”
Email: ezemlyanskaya@bionet.nsc.ru
Russian Federation, Новосибирск; Новосибирск
Н. А. Омельянчук
Федеральное государственное бюджетное научное учреждение “Федеральный исследовательский центр Институт цитологии и генетики Сибирского отделения Российской академии наук”
Email: ezemlyanskaya@bionet.nsc.ru
Russian Federation, Новосибирск
Е. В. Землянская
Федеральное государственное бюджетное научное учреждение “Федеральный исследовательский центр Институт цитологии и генетики Сибирского отделения Российской академии наук”; Федеральное государственное автономное образовательное учреждение высшего образования “Новосибирский национальный исследовательский государственный университет”
Author for correspondence.
Email: ezemlyanskaya@bionet.nsc.ru
Russian Federation, Новосибирск; Новосибирск
References
- Ganesh A., Shukla V., Mohapatra A., George A. P., Bhukya D.P.N., Das K.K., Kola V.S.R., Suresh A., Ramireddy E. Root cap to soil interface: a driving force toward plant adaptation and development // Plant Cell Physiol. 2022. V. 638. P. 1038. https://doi.org/10.1093/pcp/pcac078
- Arnaud C., Bonnot C., Desnos T., Nussaume L. The root cap at the forefront // C. R. Biol. 2010. V. 333. P. 335. https://doi.org/10.1016/j.crvi.2010.01.011
- Dolan L., Janmaat K., Willemsen V., Linstead P., Poethig S., Roberts K., Scheres B. Cellular organisation of the Arabidopsis thaliana root // Development. 1993. V. 119. P. 71. https://doi.org/10.1242/dev.119.1.71
- Fendrych M., Hautegem T.V., Durme M.V. Olvera-Carrillo Y., Huysmans M., Karimi M., Lippens S., Guérin C.J., Krebs M., Schumacher K., Nowack M.K. Programmed cell death controlled by ANAC033/SOMBRERO determines root cap organ size in Arabidopsis // Curr. Biol. 2014. V. 24. P. 931. https://doi.org/10.1016/J.CUB.2014.03.025
- Bennett T., van den Toorn A., Willemsen V., Scheres B. Precise control of plant stem cell activity through parallel regulatory inputs // Development. 2014. V. 141. P. 4055. https://doi.org/10.1242/DEV.110148
- Sack F.D., Kiss J.Z. Root cap structure in wild type and in a starchless mutant of Arabidopsis // Am. J. Bot. 1989. V. 76. P. 454. https://doi.org/10.1002/j.1537-2197.1989.tb11334.x
- Iijima M., Morita S., Barlow P.W. Structure and function of the root cap // Plant Prod. Sci. 2008. V. 11. P. 17. https://doi.org/10.1626/pps.11.17
- Maeda K., Kunieda T., Tamura K., Hatano K., Hara-Nishimura I., Shimada T. Identification of periplasmic root-cap mucilage in developing columella cells of Arabidopsis thaliana // Plant Cell Physiol. 2019. V. 60. P. 1296. https://doi.org/10.1093/pcp/pcz047
- Wenzel C.L., Rost T.L. Cell division patterns of the protoderm and root cap in the “closed” root apical meristem of Arabidopsis thaliana // Protoplasma. 2001. V. 218. P. 203. https://doi.org/10.1007/BF01306609
- Campilho A., Garcia B., Toorn H.V., Wijk H.V., Campilho A., Scheres B. Time-lapse analysis of stem-cell divisions in the Arabidopsis thaliana root meristem // Plant J. 2006. V. 48. P. 619. https://doi.org/10.1111/j.1365-313X.2006.02892.x
- Kumpf R.P., Nowack M.K. The root cap: a short story of life and death // J. Exp. Bot. 2015. V. 66. P. 5651. https://doi.org/10.1093/JXB/ERV295
- Dubreuil C., Jin X., Grönlund A., Fischer U. A Local auxin gradient regulates root cap self-renewal and size homeostasis // Curr. Biol. 2018. V. 28. P. 2581. https://doi.org/10.1016/J.CUB.2018.05.090
- Wein A., Le Gac A.L., Laux T. Stem cell ageing of the root apical meristem of Arabidopsis thaliana // Mech. Ageing Dev. 2020. V. 190. P. 111313. https://doi.org/10.1016/j.mad.2020.111313
- Shi C.-L., von Wangenheim D., Herrmann U., Wildhagen M., Kulik I., Kopf A., Ishida T., Olsson V., Anker M.K., Albert M., Butenko M.A., Felix G., Sawa S., Claassen M., Friml J., Aalen R.B. The dynamics of root cap sloughing in Arabidopsis is regulated by peptide signalling // Nat. Plants. 2018. V. 4. P. 596. https://doi.org/10.1038/s41477-018-0212-z
- Goh T., Sakamoto K., Wang P., Kozono S., Ueno K., Miyashima S., Toyokura K., Fukaki H., Kang B.-H., Nakajima K. Autophagy promotes organelle clearance and organized cell separation of living root cap cells in Arabidopsis thaliana // Development. 2022. V. 149. https://doi.org/10.1242/dev.200593
- Xuan W., Band L. R., Kumpf R.P., Van Damme D., Parizot B., De Rop G., Opdenacker D., Möller B. K., Skorzinski N., Njo M.F., De Rybel В., Audenaert D., Nowack M.K., Vanneste S., Beeckman T. Cyclic programmed cell death stimulates hormone signaling and root development in Arabidopsis // Science. 2016. V. 351. P. 384. https://doi.org/10.1126/science.aad2776
- Bennett T., van den Toorn A., Sanchez-Perez G.F., Campilho A., Willemsen V., Snel B., Scheres B. SOMBRERO, BEARSKIN1, and BEARSKIN2 regulate root cap maturation in Arabidopsis // The Plant Cell. 2010. V. 22. P. 640. https://doi.org/10.1105/tpc.109.072272
- Willemsen V., Bauch M., Bennett T., Campilho A., Wolkenfelt H., Xu J., Haseloff J., Scheres B. The NAC domain transcription factors FEZ and SOMBRERO control the orientation of cell division plane in Arabidopsis root stem cells // Dev. Cell. 2008. V. 15. P. 913. https://doi.org/10.1016/j.devcel.2008.09.019
- Hawes M.C., Brigham L.A., Wen F., Woo H.H., Zhu Y. Function of root border cells in plant health: pioneers in the rhizosphere // Annu. Rev. Phytopathol. 1998. V. 36. P. 311. https://doi.org/10.1146/annurev.phyto.36.1.311
- Hawes M.C., Gunawardena U., Miyasaka S., Zhao X. The role of root border cells in plant defense // Trends Plant Sci. 2000. V. 5. P. 128. https://doi.org/10.1016/s1360-1385(00)01556-9
- Vicré M., Santaella C., Blanchet S., Gateau A., Driouich, A. Root border-like cells of Arabidopsis. Microscopical characterization and role in the interaction with Rhizobacteria // Plant Physiol. 2005. V. 138. P. 998. https://doi.org/10.1104/pp.104.051813
- Hawes M. C. Bengough G., Cassab G., Ponce G. Root caps and Rhizosphere // J. Plant Growth Regul. 2003. V. 21. P. 352. https://doi.org/10.1007/s00344-002-0035-y
- Driouich A., Durand C., Vicré-Gibouin M. Formation and separation of root border cells // Trends Plant Sci. 2007. V. 12. P. 14.
- Ding Z., Friml J. Auxin regulates distal stem cell differentiation in Arabidopsis roots // Proc. Natl. Acad. Sci. USA. 2010. V. 107. P. 12046. https://doi.org/10.1073/pnas.1000672107
- Hong J.H., Chu H., Zhang C., Ghosh D., Gong X., Xu L. A quantitative analysis of stem cell homeostasis in the Arabidopsis columella root cap // Front. Plant Sci. 2015. V. 6. P. 206. https://doi.org/10.3389/fpls.2015.00206
- Zazímalová E., Krecek P., Skůpa P., Hoyerová K., Petrásek J. Polar transport of the plant hormone auxin – the role of PIN-FORMED (PIN) proteins // Cell. Mol. Life Sci. 2007. V. 64. P. 1621. https://doi.org/10.1007/s00018-007-6566-4
- Křeček P., Skůpa P., Libus J., Naramoto S., Tejos R., Friml J., Zažímalová E. The PIN-FORMED (PIN) protein family of auxin transporters // Genome Biol. 2009. V. 10. P. 249. https://doi.org/10.1186/gb-2009-10-12-249
- Grieneisen V.A., Xu J., Marée A.F., Hogeweg P., Scheres B. Auxin transport is sufficient to generate a maximum and gradient guiding root growth // Nature. 2007. V. 449. P. 1008. https://doi.org/10.1038/nature06215
- Mironova V.V., Omelyanchuk N.A., Yosiphon G., Fadeev S.I., Kolchanov N.A., Mjolsness E., Likhoshvai V.A. A plausible mechanism for auxin patterning along the developing root // BMC Syst. Biol. 2010. V. 4. P. 98. https://doi.org/10.1186/1752-0509-4-98
- Swarup R., Friml J., Marchant A., Ljung K., Sandberg G., Palme K., Bennett, M. Localization of the auxin permease AUX1 suggests two functionally distinct hormone transport pathways operate in the Arabidopsis root apex // Genes Dev. 2001. V. 15. P. 2648. https://doi.org/10.1101/gad.210501
- Band L.R., Wells D.M., Fozard J.A., Ghetiu T., French A.P., Pound M.P., Wilson M.H., Yu L., Li W., Hijazi H.I., Oh J., Pearce S.P., Perez-Amador M.A., Yun J., Kramer E. et al. Systems analysis of auxin transport in the Arabidopsis root apex // Plant Cell. 2014. V. 26. P. 862. https://doi.org/10.1105/tpc.113.119495
- Tian H., Niu T., Yu Q., Quan T., Ding Z. Auxin gradient is crucial for the maintenance of root distal stem cell identity in Arabidopsis // Plant Signal. Behav. 2013. V. 8: e26429. https://doi.org/10.4161/psb.26429
- Martin-Arevalillo R., Vernoux T. Decoding the auxin matrix: auxin biology through the eye of the computer // Annu. Rev. Plant Biol. 2023. V. 74. P. 387. https://doi.org/10.1146/annurev-arplant-102720-033523
- Zhang Q., Gong M., Xu X., Li H., Deng W. Roles of auxin in the growth, development, and stress tolerance of horticultural plants // Cells. 2022. V. 11. P. 2761. https://doi.org/10.3390/cells11172761
- Caumon H., Vernoux T. A matter of time: auxin signaling dynamics and the regulation of auxin responses during plant development // J. Exp. Bot. 2023. V. 74. P. 3887. https://doi.org/10.1093/jxb/erad132
- Tian H., Wabnik K., Niu T., Li H., Yu Q., Pollmann S., Vanneste S., Govaerts W., Rolcík J., Geisler M., Friml J., Ding Z. WOX5-IAA17 feedback circuit-mediated cellular auxin response is crucial for the patterning of root stem cell niches in Arabidopsis // Mol. Plant. 2014. V. 7. P. 277. https://doi.org/10.1093/mp/sst118
- Aida M., Beis D., Heidstra R., Willemsen V., Blilou I., Galinha C., Nussaume L., Noh Y. S., Amasino R., Scheres B. The PLETHORA genes mediate patterning of the Arabidopsis root stem cell niche // Cell. 2004. V. 119. P. 109. https://doi.org/10.1016/j.cell.2004.09.018
- Blilou I., Xu J., Wildwater M., Willemsen V., Paponov I., Friml J., Heidstra R., Aida M., Palme K., Scheres B. The PIN auxin efflux facilitator network controls growth and patterning in Arabidopsis roots // Nature. 2005. V. 433. P. 39. https://doi.org/10.1038/nature03184
- Cruz-Ramírez A., Díaz-Triviño S., Blilou I., Grieneisen V.A., Sozzani R., Zamioudis C., Miskolczi P., Nieuwland J., Benjamins R., Dhonukshe P., Caballero-Pérez J., Horvath B., Long Y., Mähönen A.P., Zhang H. et al. A bistable circuit involving SCARECROW-RETINOBLASTOMA integrates cues to inform asymmetric stem cell division // Cell. 2012. V. 150. P. 1002. https://doi.org/10.1016/j.cell.2012.07.017
- Yang W., Cortijo S., Korsbo N., Roszak P., Schiessl K., Gurzadyan A., Wightman R., Jönsson H., Meyerowitz E. Molecular mechanism of cytokinin-activated cell division in Arabidopsis // Science. 2021. V. 371. P. 1350. https://doi.org/10.1126/science.abe2305
- Svolacchia N., Sabatini S. Cytokinins // Curr. Biol. 2023. V. 33. P. 10. https://doi.org/10.1016/j.cub.2022.11.022.
- Antoniadi I., Plačková L., Simonovik B., Doležal K., Turnbull C., Ljung K., Novák O. Cell-type-specific cytokinin distribution within the Arabidopsis primary root apex // Plant Cell. 2015. V. 27. P. 1955. https://doi.org/10.1105/tpc.15.00176
- Stolz A., Riefler M., Lomin S. N., Achazi K., Romanov G.A., Schmülling, T. The specificity of cytokinin signalling in Arabidopsis thaliana is mediated by differing ligand affinities and expression profiles of the receptors // Plant J. 2011. V. 67. P. 157. https://doi.org/10.1111/j.1365-313X.2011.04584.x
- Tsilimigka F., Poulios S., Mallioura A., Vlachonasios K. ADA2b and GCN5 affect cytokinin signaling by modulating histone acetylation and gene expression during root growth of Arabidopsis thaliana // Plants. 2022. V. 11. P. 1335. https://doi.org/10.3390/plants11101335
- Antoniadi I., Novák O., Gelová Z., Johnson A., Plíhal ., Simerský R., Mik V., Vain T., Mateo-Bonmatí E., Karady M., Pernisova M., Plačková L., Opassathian K., Hejátko J., Friml J. et al. Cell-surface receptors enable perception of extracellular cytokinins // Nat. Commun. 2020. V. 11. P. 4284. https://doi.org/10.1101/726125
- Di Mambro R., Svolacchia N., Ioio R. D., Pierdonati E., Salvi E., Pedrazzini E., Vitale A., Perilli S., Sozzani R., Benfey P. N., Busch W., Costantino P., Sabatini S. The lateral root cap acts as an auxin sink that controls meristem size // Curr. Biol. 2019. V. 29. P. 1199. https://doi.org/10.1016/j.cub.2019.02.022
- Wang Z., Rong D., Chen D., Xiao Y., Liu R., Wu S., Yamamuro C. Salicylic acid promotes quiescent center cell division through ROS accumulation and down-regulation of PLT1, PLT2, and WOX5 // J. Integr. Plant Biol. 2021. V. 63. P. 583. https://doi.org/10.1111/jipb.13020
- Pasternak T., Groot E.P., Kazantsev F.V., Teale W., Omelyanchuk N., Kovrizhnykh V., Palme K., Mironova V.V. Salicylic acid affects root meristem patterning via auxin distribution in a concentration-dependent manner // Plant Physiol. 2019. V. 180. P. 1725. https://doi.org/10.1104/pp.19.00130
- Ke M., Ma Z., Wang D., Sun Y., Wen C., Huang D., Chen Z., Yang L., Tan S., Li R., Friml J., Miao Y., Chen X. Salicylic acid regulates PIN2 auxin transporter hyperclustering and root gravitropic growth via Remorin-dependent lipid nanodomain organisation in Arabidopsis thaliana // New Phytol. 2021. V. 229. P. 963. https://doi.org/10.1111/nph.16915
- Armengot L., Marquès-Bueno M.M., Soria-Garcia A., Müller M., Munné-Bosch S., Martínez M.C. Functional interplay between protein kinase CK 2 and salicylic acid sustains PIN transcriptional expression and root development // Plant J. 2014. V. 78. P. 411. https://doi.org/10.1111/tpj.12481
- Gonzalez-García M.P., Vilarrasa-Blasi J., Zhiponova M., Divol F., Mora-García S., Russinova E., Caño-Delgado A.I. Brassinosteroids control meristem size by promoting cell cycle progression in Arabidopsis roots // Development. 2011. V. 138. P. 849. https://doi.org/10.1242/dev.057331
- Lee H.S., Kim Y., Pham G., Kim J.W., Song J.H., Lee Y., Hwang Y.-S., Roux S.J., Kim S.H. Brassinazole resistant 1 (BZR1)-dependent brassinosteroid signalling pathway leads to ectopic activation of quiescent cell division and suppresses columella stem cell differentiation // J. Exp. Bot. 2015. V. 66. P. 4835. https://doi.org/10.1093/jxb/erv316
- Wei Z., Li J. Brassinosteroids regulate root growth, development, and symbiosis // Mol. Plant. 2016. V. 9. P. 86. https://doi.org/10.1016/j.molp.2015.12.00
- Chen Q., Sun J., Zhai Q., Zhou W., Qi L., Xu L., Wang B., Chen R., Jiang H., Qi J., Li X., Palme K., Li C. The basic helix-loop-helix transcription factor MYC2 directly represses PLETHORA expression during jasmonate-mediated modulation of the root stem cell niche in Arabidopsis // Plant Cell. 2011. V. 23. P. 3335. https://doi.org/10.1105/tpc.111.089870
- Christmann A., Hoffmann T., Teplova I., Grill E., Muller A. Generation of active pools of abscisic acid revealed by in vivo imaging of water-stressed Arabidopsis // Plant Physiol. 2005. V. 137. P. 209. https://doi.org/10.1104/pp.104.053082
- Zhang H., Han W., De Smet I., Talboys P., Loya R., Hassan A., Rong H., Jürgens G., Knox J.P., Wang M.H. ABA promotes quiescence of the quiescent centre and suppresses stem cell differentiation in the Arabidopsis primary root meristem // Plant J. 2010. V. 64. P. 764. https://doi.org/10.1111/j.1365-313X.2010.04367.x
- Sarkar A.K., Luijten M., Miyashima S., Lenhard M., Hashimoto T., Nakajima K., Sheres B., Heidstra R., Laux T. Conserved factors regulate signalling in Arabidopsis thaliana shoot and root stem cell organizers // Nature. 2007. V. 446. P. 811. https://doi.org/10.1038/nature05703
- Hardtke C.S., Berleth T. The Arabidopsis gene MONOPTEROS encodes a transcription factor mediating embryo axis formation and vascular development // EMBO J. 1998. V. 17. P. 1405. https://doi.org/10.1093/emboj/17.5.1405
- Tsuchisaka A., Theologis A. Unique and overlapping expression patterns among the Arabidopsis 1-amino-cyclopropane-1-carboxylate synthase gene family members // Plant Physiol. 2004. V. 136. P. 2982. https://doi.org/10.1104/pp.104.049999
- Swarup R., Perry P., Hagenbeek D., Van Der Straeten D., Beemster G.T., Sandberg G., Bhalerao R., Ljung K., Bennett M. J. Ethylene upregulates auxin biosynthesis in Arabidopsis seedlings to enhance inhibition of root cell elongation // Plant Cell. 2007. V. 19. P. 2186. https://doi.org/10.1105/tpc.107.052100
- Li G., Zhu C., Gan L., Ng D., Xia K. GA 3 enhances root responsiveness to exogenous IAA by modulating auxin transport and signalling in Arabidopsis // Plant Cell Rep. 2015. V. 34. P. 483. https://doi.org/10.1007/s00299-014-1728-y
- Forzani C., Aichinger E., Sornay E., Willemsen V., Laux T., Dewitte W., Murray J.A. WOX5 suppresses CYCLIN D activity to establish quiescence at the center of the root stem cell niche // Curr. Biol. 2014. V. 24. P. 1939. https://doi.org/10.1016/j.cub.2014.07.019.
- Berckmans B., Kirschner G., Gerlitz N., Stadler R., Simon R. CLE40 signaling regulates root stem cell fate // Plant Physiol. 2020 V. 182. P. 1776. https://doi.org/10.1104/pp.19.00914
- Pi L., Aichinger E., van der Graaff E., Llavata-Peris C.I., Weijers D., Hennig L., Groot E., Laux T. Organizer-derived WOX5 signal maintains root columella stem cells through chromatin-mediated repression of CDF4 expression // Dev. Cell. 2015. V. 33. P. 576. https://doi.org/10.1016/j.devcel.2015.04.024
- Stahl Y., Wink R.H., Ingram G.C., Simon R. A signaling module controlling the stem cell niche in Arabidopsis root meristems // Curr. Biol. 2009. V. 19. P. 909. https://doi.org/10.1016/j.cub.2009.03.060
- Zhang L., Yang Y., Mu C., Liu M., Ishida T., Sawa S., Zhu Y., Pi L. Control of root stem cell differentiation and lateral root emergence by CLE16/17 peptides in Arabidopsis // Front. Plant Sci. 2022. V. 13. P. 869888. https://doi.org/10.3389/fpls.2022.869888
- Stahl Y., Grabowski S., Bleckmann A., Kühnemuth R., Weidtkamp-Peters S., Pinto K.G., Kirschner G.K., Schmid J.B., Wink R.H., Hülsewede A., Felekyan S., Seidel C.A., Simon R. Moderation of Arabidopsis root stemness by CLAVATA1 and ARABIDOPSIS CRINKLY4 receptor kinase complexes // Curr. Biol. 2013. V. 23. P. 362. https://doi.org/10.1016/j.cub.2013.01.045
- Yue K., Sandal P., Williams E. L., Murphy E., Stes E., Nikonorova N., Ramakrishna P., Czyzewicz N., Montero-Morales L., Kumpf R., Lin Z., van de Cotte B., Iqbal M., Van Bel M., Van De Slijke E. et al. PP2A-3 interacts with ACR4 and regulates formative cell division in the Arabidopsis root // Proc. Natl. Acad. Sci. USA. 2016. V. 113. P. 1447. https://doi.org/10.1073/pnas.1525122113
- Kinoshita A., ten Hove C. A., Tabata R., Yamada M., Shimizu N., Ishida T., Yamaguchi K., Shigenobu S., Takebayashi Y., Iuchi S, Kobayashi M., Kurata T., Wada T., Seo M., Hasebe M. A plant U-box protein, PUB4, regulates asymmetric cell division and cell proliferation in the root meristem // Development. 2015. V. 142. P. 444. https://doi.org/10.1242/dev.113167
- Wang J.W., Wang L.J., Mao Y.B., Cai W.J., Xue H.W., Chen X.Y. Control of root cap formation by microRNA-targeted auxin response factors in Arabidopsis // Plant Cell. 2005. V. 17. P. 2204. https://doi.org/10.1105/TPC.105.033076
- Ornelas‐Ayala D., Vega‐León R., Petrone‐Mendoza E., Garay‐Arroyo A., García‐Ponce B., Álvarez‐Buylla E.R., Sanchez M.D.L.P. ULTRAPETALA1 maintains Arabidopsis root stem cell niche independently of ARABIDOPSIS TRITHORAX1 // New Phytol. 2020. V. 225. P. 1261. https://doi.org/10.1111/nph.16213
- Wildwater M., Campilho A., Perez-Perez J.M., Heidstra R., Blilou I., Korthout H., Chatterjee J., Mariconti L., Gruissem W., Scheres B. The RETINOBLASTOMA-RELATED gene regulates stem cell maintenance in Arabidopsis roots // Cell. 2005. V. 123. P. 1337. https://doi.org/10.1016/j.cell.2005.09.042
- Kawakatsu T., Stuart T., Valdes M., Breakfield N., Schmitz R.J., Nery J.R., Mark A.U. Han X. Benfey P.N., Ecker J.R. Unique cell-type-specific patterns of DNA methylation in the root meristem // Nat. Plants. 2016. V. 2. P. 16058. https://doi.org/10.1038/nplants.2016.58
- Kornet N., Scheres B. Members of the GCN5 histone acetyltransferase complex regulate PLETHORA-mediated root stem cell niche maintenance and transit amplifying cell proliferation in Arabidopsis // Plant Cell. 2009. V. 21. P. 1070. https://doi.org/10.1105/tpc.108.065300
- Ngo A.H., Kanehara K., Nakamura Y. Non‐specific phospholipases C, NPC2 and NPC6, are required for root growth in Arabidopsis // Plant J. 2019. V. 100. P. 825. https://doi.org/10.1111/tpj.14494
- Lin Y.C., Kobayashi K., Wada H., Nakamura Y. Phosphatidylglycerophosphate phosphatase is required for root growth in Arabidopsis // Biochim. Biophys. Acta, Mol. Cell Biol. Lipids. 2018. V. 1863. P. 563. https://doi.org/10.1016/j.bbalip.2018.02.007
- Begum T., Reuter R., Schöffl F. Overexpression of AtHsfB4 induces specific effects on root development of Arabidopsis // Mech. Dev. 2013. V. 130. P. 54. https://doi.org/10.1016/j.mod.2012.05.008
- Cnops G., Wang X., Linstead P., Montagu M.V., Lijsebettens M.V., Dolan L. Tornado1 and tornado2 are required for the specification of radial and circumferential pattern in the Arabidopsis root // Development. 2000. V. 127. P. 3385. https://doi.org/10.1242/dev.127.15.3385
- Galinha C., Hofhuis H., Luijten M., Willemsen V., Blilou I., Heidstra R., Scheres B. PLETHORA proteins as dose-dependent master regulators of Arabidopsis root development // Nature. 2007. V. 449. P. 1053. https://doi.org/10.1038/nature06206
- Ercoli M.F., Ferela A., Debernardi J.M., Perrone A.P., Rodriguez R.E., Palatnik J.F. GIF transcriptional coregulators control root meristem homeostasis // Plant Cell. 2018. V. 30. P. 347. https://doi.org/10.1105/tpc.17.00856
- Olvera-Carrillo Y., Van Bel M., Van Hautegem T., Fendrych M., Huysmans M., Simaskova M., van Durme M., Buscaill P., Rivas S., Coll N.S., Coppens F., Maere S., Nowack M.K. A Conserved core of programmed cell death indicator genes discriminates developmentally and environmentally induced programmed cell death in plants // Plant Physiol. 2015. V. 169. P. 2684. https://doi.org/10.1104/pp.15.00769
- Huysmans M., Buono R.A., Skorzinski N., Radio M.C., De Winter F., Parizot B., Mertens J., Karimi M., Fendrych M., Nowack M.K. NAC transcription factors ANAC087 and ANAC046 control distinct aspects of programmed cell death in the Arabidopsis columella and lateral root cap // Plant Cell. 2018. V. 30. P. 2197. https://doi.org/10.1105/tpc.18.00293
- Shimamura R., Ohashi Y., Taniguchi Y.Y., Kato M., Tsuge T., Aoyama T. Arabidopsis PLDζ1 and PLDζ2 localize to post-Golgi membrane compartments in a partially overlapping manner // Plant Mol. Biol. 2022. V. 108. P. 31. https://doi.org/10.1007/s11103-021-01205-0
- Møller S.G., McPherson M.J. Developmental expression and biochemical analysis of the Arabidopsis atao1 gene encoding an H2O2-generating diamine oxidase // Plant J. 1998. V. 13. P. 781. https://doi.org/10.1046/j.1365-313x.1998.00080.x
- Feng Q., Cubría-Radío M., Vavrdová T., De Winter F., Schilling N., Huysmans M., Nanda A.K., Melnyk C.W., Nowack M.K. Repressive ZINC FINGER OF ARABIDOPSIS THALIANA proteins promote programmed cell death in the Arabidopsis columella root cap // Plant Physiol. 2023. V. 192. P. 1151. https://doi.org/10.1093/plphys/kiad130
- Durand C., Vicré-Gibouin M., Follet-Gueye M.L., Duponchel L., Moreau M., Lerouge P., Driouich A. The organization pattern of root border-like cells of Arabidopsis is dependent on cell wall homogalacturonan // Plant Physiol. 2009. V. 150. P. 1411. https://doi.org/10.1104/pp.109.136382
- Kamiya M., Higashio S.-Y., Isomoto A., Kim J.-M., Seki M., Miyashima S., Nakajima K. Control of root cap maturation and cell detachment by BEARSKIN transcription factors in Arabidopsis // Development. 2016. V. 143. P. 4063. https://doi.org/10.1242/dev.142331
- Karve R., Suárez-Román F., Iyer-Pascuzzi A.S. The transcription factor NIN-LIKE PROTEIN7 controls border-like cell release // Plant Physiol. 2016. V. 171. P. 2101. https://doi.org/10.1104/pp.16.00453
- Feng Q., Rycke R. D., Dagdas Y., Nowack M.K. Autophagy promotes programmed cell death and corpse clearance in specific cell types of the Arabidopsis root cap // Curr. Biol. 2022. V. 32. P. 4548. https://doi.org/10.1016/j.cub.2022.03.053
Supplementary files
