Современное состояние лектинологии растений
- 作者: Петрова Н.В.1, Агълямова А.Р.1, Мокшина Н.Е.1, Горшкова Т.А.1
-
隶属关系:
- Казанский институт биохимии и биофизики Федерального исследовательского центра “Казанский научный центр Российской академии наук”
- 期: 卷 71, 编号 2 (2024)
- 页面: 115-134
- 栏目: ОБЗОРЫ
- URL: https://journals.rcsi.science/0015-3303/article/view/261879
- DOI: https://doi.org/10.31857/S0015330324020011
- EDN: https://elibrary.ru/OCCUCL
- ID: 261879
如何引用文章
详细
Лектины представляют собой группу белков, широко распространенных во всех царствах живой природы, но безусловными “чемпионами” по многочисленности и разнообразию лектинов являются растения. Фундаментальное свойство обратимо связываться со специфическими углеводами делает лектины важными участниками системы “гликокода”, которая в растительном организме с его невероятным углеводным разнообразием имеет особое функциональное значение. Структурное разнообразие лектинов служит основой их многочисленных функций, включающих передачу сигналов, связанных с ростом и развитием, а также с реакциями растений на биотические и абиотические раздражители. В обзоре представлена ретроспектива развития лектинологии растений и современные представления о классификации растительных лектинов, их локализации, известных и потенциальных функциях.
全文:

作者简介
Н. Петрова
Казанский институт биохимии и биофизики Федерального исследовательского центра “Казанский научный центр Российской академии наук”
编辑信件的主要联系方式.
Email: npetrova@inbox.ru
俄罗斯联邦, Казань
А. Агълямова
Казанский институт биохимии и биофизики Федерального исследовательского центра “Казанский научный центр Российской академии наук”
Email: npetrova@inbox.ru
俄罗斯联邦, Казань
Н. Мокшина
Казанский институт биохимии и биофизики Федерального исследовательского центра “Казанский научный центр Российской академии наук”
Email: npetrova@inbox.ru
俄罗斯联邦, Казань
Т. Горшкова
Казанский институт биохимии и биофизики Федерального исследовательского центра “Казанский научный центр Российской академии наук”
Email: npetrova@inbox.ru
俄罗斯联邦, Казань
参考
- Peumans W.J., Van Damme E.J.M. Lectins as plant defense proteins // Plant Physiol. 1995. V. 109. P. 346. https://doi.org/10.1104/pp.109.2.347
- Van Holle S., De Schutter K., Eggermont L., Tsaneva M., Dang L., Van Damme E.J.M. Comparative study of lectin domains in model species: New insights into evolutionary dynamics // Int. J. Mol. Sci. 2017. V. 18. P. 1136. https://doi: 10.3390/ijms18061136
- Van Holle S., Van Damme E.J.M. Messages from the past: New insights in plant lectin evolution // Front. Plant Sci. 2019. V. 10. P. 36. https://doi.org/10.3389/fpls.2019.00036
- De Coninck T., Van Damme E.J.M. The multiple roles of plant lectins // Plant Sci. 2021. V. 313. P. 111096. https://doi.org/10.1016/j.plantsci.2021.111096
- Gavande P.V., Goyal A., Fontes C.M.G.A. Carbohydrates and carbohydrate-active enzymes (CAZyme): An overview // Glycoside Hydrolases. 2023. P. 1. https://doi.org/10.1016/B978-0-323-91805-3.00012-5
- Boraston A.B., Bolam D.N., Gilbert H.J., Davies G.J. Carbohydrate-binding modules: fine-tuning polysaccharide recognition // Biochem. J. 2004. V. 382. P. 769. https://doi.org/10.1042/BJ20040892
- Van Damme E.J.M., Allen A.K., Peumans W.J. Isolation and characterization of a lectin with exclusive specificity towards mannose from snowdrop (Galanthus nivalis) bulbs // FEBS lett. 1987. V. 215. P. 140. https://doi.org/10.1016/0014-5793(87)80129-1
- Van Damme E.J.M. 35 years in plant lectin research: a journey from basic science to applications in agriculture and medicine // Glycoconjugate J. 2022. V. 39. P. 83. https://doi.org/10.1007/s10719-021-10015-x
- Nonomura A.M., Shevela D., Komath S.S., Biel K.Y., Govindjee G. The carbon reactions of photosynthesis: role of lectins and glycoregulation // Photosyn. 2020. V. 58. P. 1090. https://doi.org/10.32615/ps.2020.064
- De Coninck T., Van Damme E.J.M. Plant lectins: Handymen at the cell surface // Cell Surf. 2022. V. 8. P. 100091. https://doi.org/10.1016/j.tcsw.2022.100091
- Goldstein I.J., Poretz R.D. Isolation and chemical properties of lectins. In the lectins: properties, functions and applications in biology and medicine. Michigan: Academic Press. 1986. P. 33. ISBN: 9780124499454.
- Goldstein I.J., Winter H.C., Poretz R.D. Plant lectins: tools for the study of complex carbohydrates. In Glycoproteins II. Amsterdam: Elsevier. 1997. P. 403. ISBN: 9780080860909.
- Van Damme E.J.M., Lannoo N., Peumans W.J. Plant lectins // Adv. Bot. Res. 2008. V. 48. P. 107. https://doi.org/10.1016/S0065-2296(08)00403-5
- Jiang S.Y., Ma Z., Ramachandran S. Evolutionary history and stress regulation of the lectin superfamily in higher plants // BMC Evol. Biol. 2010. V. 10. P. 1. https://doi.org/10.1186/1471-2148-10-79
- Bellande K., Bono J.J., Savelli B., Jamet E., Canut H. Plant lectins and lectin receptor-like kinases: how do they sense the outside? // Int. J. Mol. Sci. 2017. V. 18. P. 1164. https://doi.org/10.3390/ijms18061164
- Kumar V., Donev E.N., Barbut F.R., Kushwah S., Mannapperuma C., Urbancsok J., Mellerowicz E.J. Genome-wide identification of Populus malectin/malectin-like domain-containing proteins and expression analyses reveal novel candidates for signaling and regulation of wood development // Front. Plant Sci. 2020. V. 11. P. 588846.
- Eggermont L., Verstraeten B., Van Damme E.J.M. Genome wide screening for lectin motifs in Arabidopsis thaliana // Plant Genome. 2017. V. 10. P. plantgenome2017.02.0010. https://doi.org/10.3835/plantgenome2017.02.0010
- Petrova N., Nazipova A., Gorshkov O., Mokshina N., Patova O., Gorshkova T. Gene expression patterns for proteins with lectin domains in flax stem tissues are related to deposition of distinct cell wall types // Front. Plant Sci. 2021. V. 12. P. 634594. https://doi.org/10.3389/fpls.2021.634594
- Aglyamova A., Petrova N., Gorshkov O., Kozlova L., Gorshkova T. Growing maize root: Lectins involved in consecutive stages of cell development // Plants. 2022. V. 11. P. 1799. https://doi.org/10.3390/plants11141799
- Yang H., Wang D., Guo L., Pan H., Yvon R., Garman S., Wu H., Cheung A.Y. Malectin/Malectin-like domain-containing proteins: a repertoire of cell surface molecules with broad functional potential // Cell Surf. 2021. V. 7. P. 100056. https://doi.org/10.1016/j.tcsw.2021.100056
- Zhang Q., Chen S., Bao Y., Wang D., Wang W., Chen R., Li Y., Xu G., Feng X., Liang X., Dou D. Functional diversification analysis of soybean malectin/malectin-like domain containing receptor-like kinases in immunity by transient expression assays // Front. Plant Sci. 2022. V. 13. P. 938876. https://doi.org/10.3389/fpls.2022.938876
- Jing X.Q., Shalmani A., Zhou M.R., Shi P.T., Muhammad I., Shi Y., Sharif R., Li W., Liu W., Chen K.M. Genome-wide identification of malectin/malectin-like domain containing protein family genes in rice and their expression regulation under various hormones, abiotic stresses, and heavy metal treatments // J. Plant Growth Regul. 2020. V. 39. P. 492. https://doi.org/10.1007/s00344-019-09997-8
- Агълямова А.Р., Хакимова А.Р., Горшков О.В., Горшкова Т.А. Physcomitrium patens – модель для изучения эволюции белков с лектиновыми доменами у растений // Физиология растений. 2024. Т. 71.
- Fouquaert E., Peumans W.J., Vandekerckhove T., Ongenaert M., Van Damme E.J. Proteins with an Euonymus lectin-like domain are ubiquitous in Embryophyta // BMC Plant Biol. 2009. V. 9. P. 1. https://doi.org/10.1186/1471-2229-9-136
- Tsaneva M., De Schutter K., Verstraeten B., Van Damme E.J. Lectin sequence distribution in QTLs from rice (Oryza sativa) suggest a role in morphological traits and stress responses // Int. J. Mol. Sci. 2019. V. 20. P. 437. https://doi.org/10.3390/ijms20020437
- Tsaneva M., Van Damme E.J.M. 130 years of plant lectin research // Glycoconjugate J. 2020. V. 37. P. 533. https://doi.org/10.1007/s10719-020-09942-y
- Silva R.M.S., Buzo F.F., Pavani R.T., de Mendonça Ludgero A.K., Taylor K.M.H., Duarte C.E.M. Plant lectins: an overview // Peer Review. 2023. V. 5. P. 303. https://doi.org/10.53660/812.prw2242
- Varki A., Gagneux P. Biological functions of glycans. In: Essentials of Glycobiology. 3rd ed. // New York: Cold Spring Harbor Laboratory Press, Cold Spring Harbor. 2015. PMID: 28876862.
- Komath S.S., Kavitha M., Swamy M.J. Beyond carbohydrate binding: new directions in plant lectin research // Org. Biomol. Chem. 2006. V. 4. P. 973. https://doi.org/10.1039/B515446D
- Choi J., Tanaka K., Cao Y., Qi Y., Qiu J., Liang Y., Lee S., Stacey G. Identification of a plant receptor for extracellular ATP // Sci. 2014. V. 343. P. 290. https://doi.org/10.1126/science.343.6168.290
- Pham A.Q., Cho S.H., Nguyen C.T., Stacey G. Arabidopsis lectin receptor kinase P2K2 is a second plant receptor for extracellular ATP and contributes to innate immunity // Plant Physiol. 2020. V. 183. P. 1364. https://doi.org/10.1104/pp.19.01265
- Bouwmeester K., Govers F. Arabidopsis L-type lectin receptor kinases: phylogeny, classification, and expression profiles // J. Exp. Bot. 2009. V. 60. P. 4383. https://doi.org/10.1093/jxb/erp277
- Wang C., Zhou M., Zhang X., Yao J., Zhang Y., Mou Z. A lectin receptor kinase as a potential sensor for extracellular nicotinamide adenine dinucleotide in Arabidopsis thaliana // eLife. 2017. V. 6. P. e25474. https://doi.org/10.7554/eLife.25474
- Pusztai A., Bardocz S. Biological effects of plant lectins on the gastrointestinal tract metabolic consequences and applications // Trends Glycosci. Glycotechnol. 1996. V. 8. P. 149. https://doi.org/10.4052/tigg.8.149
- Edelman G.M., Cunningham B.A., Reeke Jr G.N., Becker J.W., Waxdal M.J., Wang J.L. The covalent and three-dimensional structure of concanavalin A // Proc. Natl. Acad. Sci. U.S.A. 1972. V. 69. P. 2580. https://doi.org/10.1073/pnas.69.9.2580
- Vijayan M., Chandra N. Lectins // Curr. Opin. Struct. Biol. 1999. V. 9. P. 707. https://doi.org/10.1016/S0959-440X(99)00034-2
- Taylor M.E., Drickamer K. Convergent and divergent mechanisms of sugar recognition across kingdoms // Curr. Opin. Struct. Biol. 2014. V. 28. P. 14. https://doi.org/10.1016/j.sbi.2014.07.003
- Barre A., Bourne Y., Van Damme E.J., Rougé, P. Overview of the structure–function relationships of mannose-specific lectins from plants, algae and fungi // Int. J. Mol. Sci. 2019. V. 20. P. 254. https://doi.org/10.3390/ijms20020254
- Шакирова Ф.М., Безрукова М.В. Современные представления о предполагаемых функциях лектинов растений // Журнал Общей биологии. 2007. Т. 68. С. 109.
- Бабоша А.В. Лектины и проблема распознавания фитопатогенов растением-хозяином // Журнал Общей биологии. 2008. Т. 69. С. 379.
- Рожнова Н.А., Геращенков Г.А., Бабоша А.В. Индукция фитогемагглютинирующей активности в растениях картофеля in vitro арахидоновой кислотой // Физиология растений. 2002. Т. 49. С. 603.
- De Schutter K., Van Damme E.J.M. Protein-carbohydrate interactions as part of plant defense and animal immunity // Molecules. 2015. V. 20. P. 9029. https://doi.org/10.3390/molecules20059029
- Van Holle S., Van Damme E.J.M. Distribution and evolution of the lectin family in soybean (Glycine max) // Molecules. 2015. V. 20. P. 2868. https://doi.org/10.3390/molecules20022868
- Nsimba-Lubaki M., Peumans W.J. Seasonal fluctuations of lectins in barks of elderberry (Sambucus nigra) and black locust (Robinia pseudoacacia) // Plant Physiol. 1986. V. 80. P. 747. https://doi.org/10.1104/pp.80.3.747
- Wetzel S., Demmers C., Greenwood J.S. Seasonally fluctuating bark proteins are a potential form of nitrogen storage in three temperate hardwoods // Planta. 1989. V. 178. P. 275. https://doi.org/10.1007/BF00391854
- Berthelot K., Peruch F., Lecomte S. Highlights on Hevea brasiliensis (pro) hevein proteins // Biochimie. 2016. V. 127. P. 258. http://dx.doi.org/10.1016/j.biochi.2016.06.006
- Chrispeels M.J., Raikhel N.V. Lectins, lectin genes, and their role in plant defense // Plant Cell. 1991. V. 3. P. 1. https://doi.org/10.1105/tpc.3.1.1
- Iseli B., Boller T., Neuhaus J.M. The N-terminal cysteine-rich domain of tobacco class I chitinase is essential for chitin binding but not for catalytic or antifungal activity // Plant Physiol. 1993. V. 103. P. 221. https://doi.org/10.1104/pp.103.1.221
- Broekaert W.F., Van Parijs J.A.N., Leyns F., Joos H., Peumans W.J. A chitin-binding lectin from stinging nettle rhizomes with antifungal properties // Sci. 1989. V. 245. P. 1100. https://doi.org/10.1126/science.245.4922.1100
- Naithani S., Komath S.S., Nonomura A., Govindjee G. Plant lectins and their many roles: Carbohydrate-binding and beyond // J. Plant Physiol. 2021. V. 266. P. 153531. https://doi.org/10.1016/j.jplph.2021.153531
- Lannoo N., Van Damme E.J.M. Nucleocytoplasmic plant lectins // Biochim. Biophys. Acta / Gen. Subj. 2010. V. 1800. P. 190. https://doi.org/10.1016/j.bbagen.2009.07.021
- Yoneda Y., Imamoto-Sonobe N., Yamaizumi M., Uchida T. Reversible inhibition of protein import into the nucleus by wheat germ agglutinin injected into cultured cells // Exp. Cell Res. 1987. V. 173. P. 586. https://doi.org/10.1016/0014-4827(87)90297-7
- Delporte A., De Zaeytijd J., De Storme N., Azmi A., Geelen D., Smagghe G., Guisez Y., Van Damme E.J. Cell cycle-dependent O-GlcNAc modification of tobacco histones and their interaction with the tobacco lectin // Plant Physiol. Biochem. 2014. V. 83. P. 151. https://doi.org/10.1016/j.plaphy.2014.07.021
- Schouppe D., Ghesquière B., Menschaert G., De Vos W.H., Bourque S., Trooskens G., Proost P., Gevaert K., Van Damme E.J. Interaction of the tobacco lectin with histone proteins // Plant Physiol. 2011. V. 155. P. 1091. https://doi.org/10.1104/pp.110.170134
- Eggermont L., Stefanowicz K., Van Damme E.J.M. Nictaba homologs from Arabidopsis thaliana are involved in plant stress responses // Front. Plant Sci. 2018. V. 8. P. 2218. https://doi.org/10.3389/fpls.2017.02218
- Gómez G., Pallás V. Identification of an in vitro ribonucleoprotein complex between a viroid RNA and a phloem protein from cucumber plants // Mol. Plant-Microbe Interact. 2001. V. 14. P. 910. https://doi.org/10.1094/MPMI.2001.14.7.910
- Wang M.B., Boulter D., Gatehouse J.A. Characterization and sequencing of cDNA clone encoding the phloem protein PP2 of Cucurbita pepo // Plant Mol. Biol. 1994. V. 24. P. 159. https://doi.org/10.1007/BF00040582
- Read S.M., Northcote D.H. Subunit structure and interactions of the phloem proteins of Cucurbita maxima (pumpkin) // Eur. J. Biochem. 1983. V. 134. P. 561. https://doi.org/10.1111/j.1432-1033.1983.tb07603.x
- Lannoo N., Peumans W.J., Van Pamel E., Alvarez R., Xiong T.C., Hause G., Mazars C., Van Damme E.J. Localization and in vitro binding studies suggest that the cytoplasmic/nuclear tobacco lectin can interact in situ with high-mannose and complex N-glycans // FEBS lett. 2006. V. 580. P. 6329. https://doi.org/10.1016/j.febslet.2006.10.044
- Galindo-Trigo S., Grand T.M., Voigt C.A., Smith L.M. A malectin domain kinesin functions in pollen and seed development in Arabidopsis // J. Exp. Bot. 2020. V. 71. P. 1828. https://doi.org/10.1093/jxb/eraa023
- Stefanowicz K., Lannoo N., Proost P., Van Damme E.J. Arabidopsis F-box protein containing a Nictaba-related lectin domain interacts with N-acetyllactosamine structures // FEBS Open Bio. 2012. V. 2. P. 151. http://dx.doi.org/10.1016/j.fob.2012.06.002
- Stefanowicz K., Lannoo N., Van Damme E.J.M. Plant F-box proteins-judges between life and death // Crit. Rev. Plant Sci. 2015. V. 34. P. 523. https://doi.org/10.1080/07352689.2015.1024566
- Van Damme E.J.M., Barre A., Rougé P., Peumans W.J. Cytoplasmic/nuclear plant lectins: a new story // Trends Plant Sci. 2004. V. 9. P. 484. https://doi.org/10.1016/j.tplants.2004.08.003
- Pattison R.J., Amtmann A. N-glycan production in the endoplasmic reticulum of plants // Trends Plant Sci. 2009. V. 14. P. 92. https://doi.org/10.1016/j.tplants.2008.11.008
- Van Damme E.J.M., Smith D.F., Cummings R., Peumans W.J. Glycan arrays to decipher the specificity of plant lectins / The Molecular Immunology of Complex Carbohydrates-3 In Advances in Experimental Medicine and Biology // Ed. Wu A.M. Springer Science. 2011. P. 757. https://doi.org/10.1007/978-1-4419-7877-6_39
- Song M., Xu W., Xiang Y., Jia H., Zhang L., Ma Z. Association of jacalin-related lectins with wheat responses to stresses revealed by transcriptional profiling // Plant Mol. Biol. 2014. V. 84. P. 95. https://doi.org/10.1007/s11103-013-0121-5
- Lannoo N., Van Damme E.J.M. Lectin domains at the frontiers of plant defense // Front. Plant Sci. 2014. V. 5. P. 397. https://doi.org/10.3389/fpls.2014.00397
- Pinedo M., Orts F., de Oliveira Carvalho A., Regente M., Soares J.R., Gomes V.M., de la Canal L. Molecular characterization of Helja, an extracellular jacalin-related protein from Helianthus annuus: Insights into the relationship of this protein with unconventionally secreted lectins // J. Plant Physiol. 2015. V. 183. P. 144. https://doi.org/10.1016/j.jplph.2015.06.004
- Esch L., Schaffrath U. An update on jacalin-like lectins and their role in plant defense // Int. J. Mol. Sci. 2017. V. 18. P. 1592. https://doi.org/10.3390/ijms18071592
- Krattinger S.G., Keller B. Molecular genetics and evolution of disease resistance in cereals // New Phytol. 2016. V. 212. P. 320. https://doi.org/10.1111/nph.14097
- Al Atalah B., Smagghe G., Van Damme E.J.M. Orysata, a jacalin-related lectin from rice, could protect plants against biting-chewing and piercing-sucking insects // Plant Sci. 2014. V. 221. P. 21. https://doi.org/10.1016/j.plantsci.2014.01.010
- Jiang J.F., Xu Y.Y., Chong K. Overexpression of OsJAC1, a lectin gene, suppresses the coleoptile and stem elongation in rice // J. Integr. Plant Biol. 2007. V. 49. P. 230. https://doi.org/10.1111/j.1744-7909.2007.00428.x
- Ma Q.H., Liu Y.C. TaDIR13, a dirigent protein from wheat, promotes lignan biosynthesis and enhances pathogen resistance // Plant Mol. Biol. Rep. 2015. V. 33. P. 143. https://doi.org/10.1007/s11105-014-0737-x
- Paniagua C., Bilkova A., Jackson P., Dabravolski S., Riber W., Didi V., Houser J., Gigli-Bisceglia N., Wimmerova M., Budínská E., Hamann T., Hejatko J. Dirigent proteins in plants: modulating cell wall metabolism during abiotic and biotic stress exposure // J. Exp. Bot. 2017. V. 68. P. 3287. https://doi.org/10.1093/jxb/erx141
- Dang L., Rougé P., Van Damme E.J.M. Amaranthin-like proteins with aerolysin domains in plants // Front. Plant Sci. 2017. V. 8. P. 1368. https://doi.org/10.3389/fpls.2017.01368
- Petrova N., Mokshina N. Using FIBexDB for in-depth analysis of flax lectin gene expression in response to Fusarium oxysporum infection // Plants. 2022. V. 11. P. 163. https://doi.org/10.3390/plants11020163
- Van Hove J., Fouquaert E., Smith D.F., Proost P., Van Damme E.J. Lectin activity of the nucleocytoplasmic EUL protein from Arabidopsis thaliana // Biochem. Biophys. Res. Commun. 2011. V. 414. P. 101. https://doi.org/10.1016/j.bbrc.2011.09.031
- Lambin J., Demirel Asci S., Dubiel M., Tsaneva M., Verbeke I., Wytynck P., De Zaeytijd J., Smagghe G., Subramanyam K., Van Damme E.J. OsEUL lectin gene expression in rice: stress regulation, subcellular localization and tissue specificity // Front. Plant Sci. 2020. V. 11. P. 185. https://doi.org/10.3389/fpls.2020.00185
- Sahid S., Roy C., Paul S., Datta R. Rice lectin protein r40c1 imparts drought tolerance by modulating S-adenosylmethionine synthase 2, stress-associated protein 8 and chromatin-associated proteins // J. Exp. Bot. 2020. V. 71. P. 7331. https://doi.org/10.1093/jxb/eraa400
- Dubiel M., De Coninck T., Osterne V.J.S., Verbeke I., Van Damme D., Smagghe G., Van Damme E.J. The ArathEULS3 lectin ends up in stress granules and can follow an unconventional route for secretion // Int. J. Mol. Sci. 2020. V. 21. P. 1659. https://doi.org/10.3390/ijms21051659
- Van Hove J., De Jaeger G., De Winne N., Guisez Y., Van Damme E.J. The Arabidopsis lectin EULS3 is involved in stomatal closure // Plant Sci. 2015. V. 238. P. 312. https://doi.org/10.1016/j.plantsci.2015.07.005
- Strasser R. Plant protein glycosylation // Glycobiology. 2016. V. 26. P. 926. https://doi.org/10.1093/glycob/cww023
- Caramelo J.J., Parodi A.J. Getting in and out from calnexin/calreticulin cycles // J. Biol. Chem. 2008. V. 283. P. 10221. https://doi.org/10.1074/jbc.R700048200
- Feng H., Qiu T., Yin C., Zhao X., Xu G., Qi L., Zhang Y., Peng Y., Zhao W. The rice malectin regulates plant cell death and disease resistance by participating in glycoprotein quality control // Int. J. Mol. Sci. 2022. V. 23. P. 5819. https://doi.org/10.3390/ijms23105819
- Strasser R., Bondili J.S., Vavra U., Schoberer J., Svoboda B., Glossl J., Léonard R., Stadlmann J., Altmann F., Steinkellner H., Mach L. A unique β1, 3-galactosyltransferase is indispensable for the biosynthesis of N-glycans containing Lewis a structures in Arabidopsis thaliana // Plant Cell. 2007. V. 19. P. 2278. https://doi.org/10.1105/tpc.107.052985
- Basu D., Wang W., Ma S., DeBrosse T., Poirier E., Emch K., Soukup E., Tian L., Showalter A.M. Two hydroxyproline galactosyltransferases, GALT5 and GALT2, function in arabinogalactan-protein glycosylation, growth and development in Arabidopsis // PLoS One. 2015. V. 10. P. e0125624. https://doi.org/10.1371/journal.pone.0125624
- Kim Y.S., Lee J.H., Yoon G.M., Cho H.S., Park S.W., Suh M.C., Choi D., Ha H.J., Liu J.R., Pai H.S. CHRK1, a chitinase-related receptor-like kinase in tobacco // Plant Physiol. 2000. V. 123. P. 905. https://doi.org/10.1104/pp.123.3.905
- Liu P.L., Wan J.N., Guo Y.P., Ge S., Rao G.Y. Adaptive evolution of the chrysanthemyl diphosphate synthase gene involved in irregular monoterpene metabolism // BMC evolutionary biology. 2012. V. 12. P. 1. https://doi.org/10.1186/1471-2148-12-214
- Yang C., Wang E., Liu J. CERK1, more than a co-receptor in plant-microbe interactions // New Phytol. 2022. V. 234. P. 1606. https://doi.org/10.1111/nph.18074
- Miya A., Albert P., Shinya T., Desaki Y., Ichimura K., Shirasu K., Narusaka Y., Kawakami N., Kaku H., Shibuya N. CERK1, a LysM receptor kinase, is essential for chitin elicitor signaling in Arabidopsis // Proc. Natl. Acad. Sci. U.S.A. 2007. V. 104. P. 19613. https://doi.org/10.1073/pnas.0705147104
- Liu T., Liu Z., Song C., Hu Y., Han Z., She J., Fan F., Wang J., Jin C., Chang J., Zhou J.M., Chai J. Chitin-induced dimerization activates a plant immune receptor // Sci. 2012. V. 336. P. 1160. https://doi.org/10.1126/science.1218867
- Cao Y., Liang Y., Tanaka K., Nguyen C.T., Jedrzejczak R.P., Joachimiak A., Stacey G. The kinase LYK5 is a major chitin receptor in Arabidopsis and forms a chitin-induced complex with related kinase CERK1 // eLife. 2014. V. 3. P. e03766. https://doi.org/10.7554/eLife.03766
- Yamada K., Yamaguchi K., Shirakawa T., Nakagami H., Mine A., Ishikawa K., Fujiwara M., Narusaka M., Narusaka Y., Ichimura K., Kobayashi Y., Matsui H., Nomura Y., Nomoto M., Tada Y. et al. The Arabidopsis CERK 1-associated kinase PBL 27 connects chitin perception to MAPK activation // EMBO J. 2016. V. 35. P. 2468. https://doi.org/10.15252/embj.201694248
- Willmann R., Lajunen H.M., Erbs G., Newman M.A., Kolb D., Tsuda K., Katagiri F., Fliegmann J., Bono J.J., Cullimore J.V., Jehle A.K., Götz F., Kulik A., Molinaro A., Lipka V. et al. Arabidopsis lysin-motif proteins LYM1 LYM3 CERK1 mediate bacterial peptidoglycan sensing and immunity to bacterial infection // Proc. Natl. Acad. Sci. U.S.A. 2011. V. 108. P. 19824. https://doi.org/10.1073/pnas.1112862108
- Desaki Y., Miyata K., Suzuki M., Shibuya N., Kaku H. Plant immunity and symbiosis signaling mediated by LysM receptors // Innate Immun. 2018. V. 24. P. 92. https://doi.org/10.1177/1753425917738885
- Tanaka K., Choi J., Cao Y., Stacey G. Extracellular ATP acts as a damage-associated molecular pattern (DAMP) signal in plants // Front. Plant Sci. 2014. V. 5. P. 446. https://doi.org/10.3389/fpls.2014.00446
- Gouget A., Senchou V., Govers F., Sanson A., Barre A., Rougé P., Pont-Lezica R., Canut H. Lectin receptor kinases participate in protein-protein interactions to mediate plasma membrane-cell wall adhesions in Arabidopsis // Plant Physiol. 2006. V. 140. P. 81. https://doi.org/10.1104/pp.105.066464
- Hwang I.S., Hwang B.K. The pepper mannose-binding lectin gene CaMBL1 is required to regulate cell death and defense responses to microbial pathogens // Plant Physiol. 2011. V. 155. P. 447. https://doi.org/10.1104/pp.110.164848
- Luo X., Wu W., Liang Y., Xu N., Wang Z., Zou H., Liu J. Tyrosine phosphorylation of the lectin receptor-like kinase LORE regulates plant immunity // EMBO J. 2020. V. 39. P. e102856. https://doi.org/10.15252/embj.2019102856
- Labbé J., Muchero W., Czarnecki O., Wang J., Wang X., Bryan A.C., Zheng K., Yongil Y., Xie M., Zhang J., Wang D., Meidl P., Wang H., Morrell-Falvey J.L., Cope K.R. et al. Mediation of plant-mycorrhizal interaction by a lectin receptor-like kinase // Nat. Plants. 2019. V. 5. P. 676. https://doi.org/10.1038/s41477-019-0469-x
- Catanzariti A.M., Lim G.T.T., Jones D.A. The tomato I-3 gene: a novel gene for resistance to Fusarium wilt disease // New Phytol. 2015. V. 207. P. 106. https://doi.org/10.1111/nph.13348
- Nasrallah J.B., Nasrallah M.E. S-locus receptor kinase signalling // Biochem. Soc. Trans. 2014. V. 42. P. 313. https://doi.org/10.1042/BST20130222
- Ma R., Han Z., Hu Z., Lin G., Gong X., Zhang H., Nasrallah J.B., Chai J. Structural basis for specific self-incompatibility response in Brassica // Cell Res. 2016. V. 26. P. 1320. https://doi.org/10.1038/cr.2016.129
- Deb S., Sankaranarayanan S., Wewala G., Widdup E., Samuel M.A. The S-domain receptor kinase Arabidopsis receptor kinase2 and the U box/armadillo repeat-containing E3 ubiquitin ligase9 module mediates lateral root development under phosphate starvation in Arabidopsis // Plant Physiol. 2014. V. 165. P. 1647. https://doi.org/10.1104/pp.114.244376
- Feng W., Kita D., Peaucelle A., Cartwright H.N., Doan V., Duan Q., Liu M., Maman J., Leonie S., Schmitz-Thom I., Yvon R., Kudla J., Wu H., Cheung A.Y., Dinneny J.R. The FERONIA receptor kinase maintains cell-wall integrity during salt stress through Ca2+ signaling // Curr. Biol. 2018. V. 28. P. 666. https://doi.org/10.1016/j.cub.2018.01.023
- Ge Z., Dresselhaus T., Qu L.J. How CrRLK1L receptor complexes perceive RALF signals // Trends Plant Sci. 2019. V. 24. P. 978. https://doi.org/10.1016/j.tplants.2019.09.002
- Franck C.M., Westermann J., Boisson-Dernier A. Plant malectin-like receptor kinases: from cell wall integrity to immunity and beyond // Annu. Rev. Plant Biol. 2018. V. 69. P. 301. https://doi.org/10.1146/annurev-arplant-042817-040557
- Ortiz-Morea F.A., Liu J., Shan L., He P. Malectin-like receptor kinases as protector deities in plant immunity // Nat. Plants. 2022. V. 8. P. 27. https://doi.org/10.1038/s41477-021-01028-3
- Tang W., Lin W., Zhou X., Guo J., Dang X., Li B., Lin D., Yang Z. Mechano-transduction via the pectin-FERONIA complex activates ROP6 GTPase signaling in Arabidopsis pavement cell morphogenesis // Curr. Biol. 2022. V. 32. P. 508. https://doi.org/10.1016/j.cub.2021.11.031
- Zhang R., Shi P.T., Zhou M., Liu H.Z., Xu X.J., Liu W.T., Chen K.M. Rapid alkalinization factor: function, regulation, and potential applications in agriculture // Stress Biol. 2023. V. 3. P. 16. https://doi.org/10.1007/s44154-023-00093-2
- Haruta M., Sabat G., Stecker K., Minkoff B.B., Sussman M.R. A peptide hormone and its receptor protein kinase regulate plant cell expansion // Sci. 2014. V. 343. P 408. https://doi.org/10.1126/science.1244454
- Gonneau M., Desprez T., Martin M., Doblas V.G., Bacete L., Miart F., Sormani R., Hematy K., Renou J., Landrein B., Murphy E., Van De Cotte B., Vernhettes S., De Smet I., Höfte H. Receptor kinase THESEUS1 is a rapid alkalinization factor 34 receptor in Arabidopsis // Curr. Biol. 2018. V. 28. P. 2452. https://doi.org/10.1016/j.cub.2018.05.075
- Hématy K., Sado P.E., Van Tuinen A., Rochange S., Desnos T., Balzergue S., Pelletier S., Renou J., Höfte H. A receptor-like kinase mediates the response of Arabidopsis cells to the inhibition of cellulose synthesis // Curr. Biol. 2007. V. 17. P. 922. https://doi.org/10.1016/j.cub.2007.05.018
- Guo H., Li L., Ye H., Yu X., Algreen A., Yin Y. Three related receptor-like kinases are required for optimal cell elongation in Arabidopsis thaliana // Proc. Natl. Acad. Sci. U.S.A. 2009. V. 106. P. 7648. https://doi.org/10.1073/pnas.0812346106
- Schoenaers S., Balcerowicz D., Breen G., Hill K., Zdanio M., Mouille G., Holman T.J., Oh J., Wilson M.H., Nikonorova N., Dai Vu L., De Smet I., Swarup R., De Vos W.H., Pintelon I. et al. The auxin-regulated CrRLK1L kinase ERULUS controls cell wall composition during root hair tip growth // Curr. Biol. 2018. V. 28. P. 722. https://doi.org/10.1016/j.cub.2018.01.050
- Ge Z., Bergonci T., Zhao Y., Zou Y., Du S., Liu M.C., Luo X., Ruan H., García-Valencia L.E., Zhong S., Hou S., Huang Q., Lai L., Moura D.S., Gu H. et al. Arabidopsis pollen tube integrity and sperm release are regulated by RALF-mediated signaling // Sci. 2017. V. 358. P. 1596. https://doi.org/10.1126/science.aao3642
- Gao S., Li C. CrRLK1L receptor kinases-regulated pollen-pistil interactions // Reproduction and Breeding. 2022. V. 2. P. 113. https://doi.org/10.1016/j.repbre.2022.11.002
- Liang X., Zhou J.M. The secret of fertilization in flowering plants unveiled // Sci. Bull. 2018. V. 63. P. 408. https://doi.org/10.1016/j.scib.2018.02.010
- Zhong S., Li L., Wang Z., Ge Z., Li Q., Bleckmann A., Wang J., Song Z., Shi Y., Liu T., Li L., Zhou H., Wang Y., Zhang L., Wu H. et al. RALF peptide signaling controls the polytubey block in Arabidopsis // Sci. 2022. V. 375. P. 290. https://doi.org/10.1126/science.abl4683
- Hou Y., Guo X., Cyprys P., Zhang Y., Bleckmann A., Cai L., Huang Q., Luo Y., Gu H., Dresselhaus T., Dong J., Qu L.J. Maternal ENODLs are required for pollen tube reception in Arabidopsis // Curr. Biol. 2016. V. 26. P. 2343. https://doi.org/10.1016/j.cub.2016.06.053
补充文件
