Scutellaria baicalensis Georgi: Projection of Root Metabolome on Hairy Root Culture

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The study characterizes flavonoid and phenylethanoid metabolites of Baikal skullcap (Scutellaria baicalensis). The roots of intact plants and the hairy root cultures were compared. In the culture derived from seeds of wild plants, almost the same set of metabolites as in the whole root was found. Meanwhile, the levels of methylated and glycosylated derivatives of both classes of substances were different. The roots of intact plants accumulated significant amounts of sucrose. Methylated flavones, responsible for plant protection from biotic and abiotic stress-factors, were more abundant in the hairy root cultures. In both specimens, 7‑sulfate 6-ОМе wogonin was identified for the first time. It is concluded that visualization of mass-spectrometric data of a metabolome represents a convenient tool to reveal changes in the metabolome caused by environmental factors or plant damage.

About the authors

Yu. N. Elkin

Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences

Email: step_ann@mail.ru
690022, Vladivostok, Russia

A. Yu. Manyakhin

Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch, Russian Academy of Sciences

Email: step_ann@mail.ru
690022, Vladivostok, Russia

A. Yu. Stepanova

Timiryazev Institute of Plant Physiology, Russian Academy of Sciences

Author for correspondence.
Email: step_ann@mail.ru
127276, Moscow, Russia

References

  1. Cui M.Y., Lu A.R., Li J.X., Liu J., Fang Y.M., Pei T.L., Zhong X., Wei Y.-K., Kong Y., Wen-Qing Q., Hu Y.-H., Yang J., Chen X.-Y., Martin C., Zhao Q. Two types of O‑methyltransferase are involved in biosynthesis of anticancer methoxylated 4'-deoxyflavones in Scutellaria baicalensis Georgi. // Plant Biotech. J. 2022. V. 20. P. 129. https://doi.org/10.1111/PBI.13700
  2. Fang Y., Liu J., Zheng M., Zhu S., Pei T., Cui M., Chang L., Xiao H., Yang J., Martin C., Zhao Q. SbMYB3 transcription factor promotes root-specific flavone biosynthesis in Scutellaria baicalensis // Horticulture Res. 2023. V. 10. uhac266. https://doi.org/10.1093/hr/uhac266
  3. Qiao X., Li R., Song W., Miao W.-J., Liu J., Chen H.-B., Guo D.-A., Ye M. A targeted strategy to analyze untargeted mass spectral data: Rapid chemical profiling of Scutellaria baicalensis using ultra-high performance liquid chromatography coupled with hybrid quadrupole orbitrap mass spectrometry and key ion filtering // J. Chromatog. A. 2016. V. 1441. P. 83. https://doi.org/10.1016/j.chroma.2016.02.079
  4. Stojakowska A., Malarz J. Flavonoid production in transformed root cultures of Scutellaria baicalensis // J. Plant Physiol. 2000. V. 156. P. 121. https://doi.org/10.1016/S0176-1617(00)80282-5
  5. Kuzovkina I.N., Guseva A.V., Alterman I.E., Karnachuk R.A. Flavonoid production in transformed Scutellaria baicalensis roots and ways of its regulation // Russ. J. Plant Physiol. 2001. V. 48. P. 448. https://doi.org/10.1023/A:1016739010716
  6. Elkin Y.N., Kulesh N.I., Stepanova A.Y., Solovieva A.I., Kargin V.M., Manyakhin A.Y. Methylated flavones of the hairy root culture Scutellaria baicalensis // J. Plant Physiol. 2018. V. 231. P. 277. https://doi.org/10.1016/j.jplph.2018.10.009
  7. Sun C., Zhang M., Dong H., Liu W., Guo L., Wang X. A spatially-resolved approach to visualize the distribution and biosynthesis of flavones in Scutellaria baicalensis Georgi // J. Pharmac. Biomed. Anal. 2020. V. 179. P. 113014. https://doi.org/10.1016/J.JPBA.2019.113014
  8. Elkin Y.N., Kulesh N.I., Shishmarev V.M., Kargin V.M., Manyakhin A.Y. Scutellaria baicalensis: the end of flavone biosynthesis pathway // Acta Biol. Cracoviensia Series Bot. 2022. V. 64. P. 39. https://doi.org/10.24425/abcsb.2021.136704
  9. Gutierrez-Valdes N., Häkkinen S.T., Lemasson C., Guillet M., Oksman-Caldentey K.M., Ritala A., Cardon F. Hairy root cultures – a versatile tool with multiple applications. // Front. Plant Sci. 2020. V. 11. P. 33. https://doi.org/10.3389/FPLS.2020.00033/BIBTEX
  10. Zhao Q., Zhang Y., Wang G., Hill L., Weng J.K., Chen X.-Y., Xue H., Martin C. A specialized flavone biosynthetic pathway has evolved in the medicinal plant Scutellaria baicalensis // Sci. Adv. 2016. V. 2. e1501780. https://doi.org/10.1126/sciadv.1501780
  11. Zhao Q., Cui M.Y., Levsh O., Yang D., Liu J., Li J., Hill L., Yang L., Hu Y., Weng Y.-K., Cheng X.-Y, Martin C. Two CYP82D enzymes function as flavone hydroxylases in the biosynthesis of root-specific 4′-deoxyflavones in Scutellaria baicalensis // Molec. Plant. 2018. V. 11. P. 135. https://doi.org/10.1016/j.molp.2017.08.009
  12. Zhao Q., Yang J., Cui M.Y., Liu J., Fang Y., Yan M., Qiu W., Shang H., Xu Z., Yidiresi R., Weng J.K., Pluskal T., Vigouroux M., Steuernagel B., Wei Y. et al. The reference genome sequence of scutellaria baicalensis provides isights into the evolution of wogonin biosynthesis // Molec. Plant. 2019. V. 12. P. 935. https://doi.org/10.1016/j.molp.2019.04.002
  13. Zhao Q., Chen X.Y., Martin C. Scutellaria baicalensis, the golden herb from the garden of Chinese medicinal plants // Sci. Bull. 2016. V. 61. P. 1391. https://doi.org/10.1007/S11434-016-1136-5
  14. Ramaroson M.L., Koutouan C., Helesbeux J.J., Le Clerc V., Hamama L., Geoffriau E., Briard M. Role of phenylpropanoids and flavonoids in plant resistance to pests and diseases // Molec. 2022. V. 27. P. 8371. https://doi.org/10.3390/molecules27238371
  15. Gamborg O.L., Miller R.A., Ojima K. Nutrient requirements of suspension cultures of soybean root cells // Exp. Cell Res. 1968. V. 50. P. 151. https://doi.org/10.1016/0014-4827(68)90403-5
  16. Solov’eva A.I., Evsyukov S.V., Sidorov R.A., Stepanova A.Y. Correlation of endogenous β-glucuronidase activity with differentiation of in vitro cultures of Scutellaria baicalensis // Acta Physiol. Plant. 2020. V. 42. P. 1. https://doi.org/10.1007/s11738-020-03159-0
  17. Hu L., Liu J., Zhang W., Wang T., Zhang N., Lee Y.H., Lu H. Functional metabolomics decipher biochemical functional and associated mechanisms underlie small-molecule metabolism // Mass Spectr. Rev. 2020. V. 39. P. 417. https://doi.org/10.1002/MAS.21611
  18. Teles Y.C.F., Souza M.S.R., De Souza M. de F.V. Sulphated flavonoids: biosynthesis, structures, and biological activities // Molec. 2018. V. 23. P. 480. https://doi.org/10.3390/MOLECULES23020480
  19. Yang Y., Xi D., Wu Y., Liu T. Complete biosynthesis of the phenylethanoid glycoside verbascoside // Plant Commun. 2023. V. 4. P. 100592. https://doi.org/10.1016/J.XPLC.2023.100592

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (316KB)
3.

Download (624KB)
4.

Download (331KB)
5.

Download (449KB)
6.

Download (221KB)

Copyright (c) 2023 Ю.Н. Елькин, А.Ю. Маняхин, А.Ю. Степанова

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies