Phenolic Compounds of Plants Bidens tripartita (L.) and Bidens pilosa (L.) from Different Locations

封面

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Bidens tripartita L. and Bidens pilosa L. are potential sources of biologically active substances with antimicrobial, antidiabetic, anticancer, anti-inflammatory, antioxidant, and other activities. These types of strings are widely used in different countries in phytomedicine. It was established that the studied species are rich in a variety of phenolic compounds, and plants growing in temperate continental (Tatarstan) and tropical (Burundi) climates differ slightly in the content of phenolic compounds, which indicates a genetically determined narrow amplitude of variability in the metabolism of these species. Qualitative analysis of phenolic compounds showed that the studied plant species synthesize certain groups of compounds for adaptation to specific environmental conditions. Kirimiro in the Republic of Burundi and Spassky raion in the Republic of Tatarstan can be considered as promising areas for growing and collecting the plant species under study. Temperature, altitude, rainfall, and soil composition are key factors affecting phenolic content in B. pilosa and B. tripartita plants.

作者简介

E. Bimenyindavyi

Kazan Federal University

Email: efredence@gmail.com
Kazan, Russia

L. Khusnetdinova

Kazan Federal University

Email: efredence@gmail.com
Kazan, Russia

O. Timofeeva

Kazan Federal University

编辑信件的主要联系方式.
Email: efredence@gmail.com
Kazan, Russia

参考

  1. Chang S.L., Chiang Y.M., Chang C.L., Yeh H.H., Shyur L.F., Kuo Y.H., Wu T.K., Yang W.C. Flavonoids, centaurein and centaureidin, from Bidens pilosa, stimulate IFN-gamma expression // J Ethnopharmacol. 2007. V. 112. P. 232. https://doi.org/10.1016/j.jep.2007.03.001
  2. Wu L., Nie L., Guo S., Wang Q., Wu Z., Lin Y., Wang Y., Li B., Gao T., Yao H. Identification of medicinal Bidens plants for quality control based on organelle genomes // Front. Pharmacol. 2022. V. 13. P. 1. https://doi.org/10.3389/fphar.2022.84213
  3. Mohi U. Environmental factors on secondary metabolism of medicinal plants // Acta Scientific Pharmaceutical Sciences. 2019. V. 3. P. 34. https://doi.org/10.31080/ASPS.2019.03.0338
  4. Ncube B., Finnie J.F., Van Staden J. Quality from the field: The impact of environmental factors as quality determinants in medicinal plants // S. Afr J. Bot. 2012. V. 82. P. 11. https://doi.org/10.1016/j.sajb.2012.05.009
  5. Mohiuddin A.K. Impact of various environmental factors on secondary metabolism of medicinal plants // J. Pharm. ClinRes. 2019. V. 7. P. 1. https://doi.org/10.19080/JPCR.2019.07.555704
  6. Sarker U., Oba S. Drought stress enhances nutritional and bioactive compounds, phenolic acids and antioxidant capacity of Amaranthus leafy vegetable // BMC Plant Biol. 2018. V. 18. P. 1. https://doi.org/10.1186/s12870-018-1484-1
  7. Jan R., Asaf S., Numan M., Lubna Kim K.-M. Plant secondary metabolite biosynthesis and transcriptional regulation in response to biotic and abiotic stress conditions // Agronomy. 2021. V. 11. P. 1. https://doi.org/10.3390/agronomy11050968
  8. Yuan Y., Tang X., Jia Z., Li C., Ma J., Zhang J. The Effects of ecological factors on the main medicinal components of Dendrobium officinale under different cultivation modes // Forests. 2020. V. 11. P. 1.
  9. Issa A.M., Ambrose O.A., Mohammed M., Haruna K., Jacobus N.E. Effects of geographical location on the yield and bioactivity of Anoigeissus leiocarpus // J. Pharm. Biores. 2008. V. 5. P. 68.https://doi.org/10.4314/jpb. v5i2.52995
  10. Запрометов М.Н. Фенольные соединения и методы их определения. Биохимические методы в физиологии растений. М.: Наука, 1971. 185 С.
  11. Андреева В.Ю., Калинкина Г.И. “Разработка методики количественного определения флавоноидов в Манжетке обыкновенной Alchemilla vulgaris l.s.l” // Химия растительного сырья. 2000. №1. С. 85.
  12. Сулейманов Ф.Ш. Определение дубильных веществ в траве Золотарника канадского (Solidago canadensis L.) // J. Sci. Articles “Health and Education Millennium”. 2017. V. 19. P. 302.
  13. Хуснетдинова Л.З., Акулов А.Н., Дубровная С.А. Изучение спектра биологически активных флавоноидов травы Hypericum perforatum L. флоры Республики Татарстан методом высокоэффективной жидкостной хроматографии // Химия растительного сырья. 2017. №4. С. 175.
  14. Šamec D., Karalija E., Šola I., Vujčić B.V., Salopek-Sondi B. The role of polyphenols in abiotic stress response: The influence of molecular structure // Plants. 2021. V. 10. P. 118. https://doi.org/10.3390/plants10010118. PMID: 33430128; PMCID: PMC7827553
  15. Nicolas N., Bruno G., Michael N.C., María M.M., Renée H.F. The influence of environmental variations on the phenolic compound profiles and antioxidant activity of two medicinal Patagonian valerians (Valeriana carnosa Sm. and V. clarionifolia Phil.) // AIMS Agriculture and Food. 2021. V. 6. P. 106. https://doi.org/10.3934/agrfood.2021007
  16. Ghasemi K., Ghasemi Y., Ehteshamnia A., Nabavi S.M., Nabavi S.F., Ebrahimzadeh M.A., Pourmorad F. Influence of environmental factors on antioxidant activity, phenol and flavonoids contents of walnut (Juglans regia L.) green husks // J. Medic. Plants Res. 2011. V. 5. P. 1128.
  17. Ibrahim A.I., Jabbour A.A., Abdulmajeed A.M., Elhady M.E., Almaroai Y.A., Hashim A.M. Adaptive responses of four medicinal plants to high altitude oxidative stresses through the regulation of antioxidants and secondary metabolites // Agronomy. 2022. V. 12. P. 1. https://doi.org/10.3390/agronomy12123032
  18. Singh P., Arif Y., Bajguz A., Hayat S. The role of quercetin in plants // Plant Physiol. Biochem. 2021. V. 66. P. 10. https://doi.org/10.1016/j.plaphy.2021.05.023
  19. Oney-Montalvo J., Uc-Varguez A., Ramírez-Rivera E., Ramírez-Sucre M., Rodríguez-Buenfil I. Influence of soil composition on the profile and content of polyphenols in habanero peppers (Capsicum chinense Jacq) // Agronomy. 2020. V. 10. P. 1. https://doi.org/10.3390/agronomy10091234
  20. Bénard C., Bourgaud F., Gautier H. Impact of temporary nitrogen deprivation on tomato leaf phenolics // Int. J. Mol. Sci. 2011. V. 12. P. 7971. https:// https://doi.org/10.3390/ijms12117971
  21. Olsen K.M., Slimestad R., Lea U.S., Brede C., Løvdal T., Ruoff P., Verheul M., Lillo C. Temperature and nitrogen effects on regulators and products of the flavonoid pathway: experimental and kinetic model studies // Plant Cell Environ. 2009. V. 32. P. 286. https:// https://doi.org/10.1111/j.1365-3040.2008.01920
  22. Scheible W.R., Morcuende R., Czechowski T., Fritz C., Osuna D., Palacios-Rojas N., Schindelasch D., Thimm O., Udvardi M.K., Stitt M. Genome-wide reprogramming of primary and secondary metabolism, protein synthesis, cellular growth processes, and the regulatory infrastructure of Arabidopsis in response to nitrogen // Plant Physiol. 2004. V. 136. P. 2483. https://doi.org/10.1104/pp.104.047019
  23. Singh P. The role of quercetin in plants // Plant Physiol. Biochem. 2021. V. 166. P. 10. https://doi.org/10.1016/j.plaphy.2021.05.023
  24. Jaakola L., Hohtola A. Effect of latitude on flavonoid biosynthesis in plants // Plant Cell Environ. 2010. V. 33. P. 1239. https://doi.org/10.1111/j.1365-3040.2010.02154
  25. Narvekar A.S., Tharayil N. Nitrogen fertilization influences the quantity, composition, and tissue association of foliar phenolics in strawberries // Front. Plant Sci. 2021. V. 12. P. 1. https://doi.org/10.3389/fpls.2021.613839
  26. Marlin M., Simarmat M., Salamah U., Nurcholis W. Effect of nitrogen and potassium application on growth, total phenolic, flavonoid contents, and antioxidant activity of Eleutherine palmifolia // AIMS Agricul. Food. 2022. V. 7. P. 580. https://doi.org/10.3934/agrfood.2022036
  27. Anteh J.D., Timofeeva O.A., Mostyakova A.A. Assessment of mineral nutrient impact on metabolites accumulation in kale (Brassica oleracea var. sabellica) // Sib. J. Life Sci. Agricul. 2021. V. 13. P. 208. https://doi.org/10.12731/2658-6649-2021-13-3-208-224
  28. Nagahama N., Gastaldi B., Clifford M.N., Manifesto M.M., Fortunato R.H. The influence of environmental variations on the phenolic compound profiles and antioxidant activity of two medicinal Patagonian valerians (Valeriana carnosa Sm. and V. clarionifolia Phil.) // AIMS Agricul. Food. 2021. V. 6. P. 106. https://doi.org/10.3934/agrfood.2021007

补充文件

附件文件
动作
1. JATS XML
2.

下载 (268KB)
3.

下载 (165KB)
4.

下载 (167KB)

版权所有 © Э. Бименьиндавьи, Л.З. Хуснетдинова, О.А. Тимофеева, 2023

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».