Establishing a Long-Term Cultivated Embryogenic Culture of Papaver rupifragum Boiss. & Reut. and Its Cytological and Biochemical Study
- 作者: Rumyantseva N.I.1,2, Kostyukova Y.A.1, Valieva A.I.1, Akulov A.N.1, Ageeva M.V.1
-
隶属关系:
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center Kazan Scientific Center, Russian Academy of Sciences
- Kazan Federal University
- 期: 卷 70, 编号 7 (2023)
- 页面: 743-757
- 栏目: ЭКСПЕРИМЕНТАЛЬНЫЕ СТАТЬИ
- URL: https://journals.rcsi.science/0015-3303/article/view/233773
- DOI: https://doi.org/10.31857/S0015330323600894
- EDN: https://elibrary.ru/BFKIWY
- ID: 233773
如何引用文章
详细
An embryogenic culture of poppy Papaver rupifragum Boiss. & Reut., which was initiated on the roots of seedlings grown from seeds on MS medium with the addition of 1 mg/L IBA, was obtained for the first time. Subsequent maintenance of the embryogenic culture was carried out on a hormone-free MS medium. Long-term cultivation and preservation of the embryogenic capacity of the culture (more than 5 years) was supported by cycles of adventitious embryoidogenesis, including the formation of callus on preexisting embryoids and the induction of new embryoids from their subsurface cells. In this regard, the resulting P. rupifragum culture can be considered as a differentiated culture in which the callus stage is an intermediate stage of development. It has been established that the surface of newly formed embryoids is covered with a surface network of extracellular matrix formed by polysaccharides, lipids, and terpenes. Histological analysis showed that embryogenic P. rupifragum culture is characterized by the formation of complexes of fused embryoids (CFE), which presumably arise either as a result of cleavage polyembryony or during the synchronous development of nearby embryoids. A study of the histology and ultrastructure of CFE revealed that the fusion of embryoids is caused by disturbances in the formation of the epidermis and cuticle. Histochemical studies have established that embryogenic P. rupifragum culture synthesizes and accumulates triacylglycerides, polysaccharides, phenolic compounds (PCs), terpenes, and alkaloids. It has been shown that the quantitative and qualitative composition of the PCs and alkaloids of the P. rupifragum culture depended on the age of the culture and its differentiation, adjustable by growing conditions (light, dark). Differentiated embryogenic P. rupifragum culture retains the ability to form embryoids on a hormone-free MS medium for a long time of cultivation and can be the basis for the further development of biotechnological methods for producing medicinal compounds for cosmetology and pharmacology.
作者简介
N. Rumyantseva
Kazan Institute of Biochemistry and Biophysics, Federal Research Center Kazan Scientific Center, Russian Academy of Sciences; Kazan Federal University
Email: nat_rumyantseva@mail.ru
Kazan, Russia; Kazan, Russia
Yu. Kostyukova
Kazan Institute of Biochemistry and Biophysics, Federal Research Center Kazan Scientific Center, Russian Academy of Sciences
Email: nat_rumyantseva@mail.ru
Kazan, Russia
A. Valieva
Kazan Institute of Biochemistry and Biophysics, Federal Research Center Kazan Scientific Center, Russian Academy of Sciences
Email: nat_rumyantseva@mail.ru
Kazan, Russia
A. Akulov
Kazan Institute of Biochemistry and Biophysics, Federal Research Center Kazan Scientific Center, Russian Academy of Sciences
Email: nat_rumyantseva@mail.ru
Kazan, Russia
M. Ageeva
Kazan Institute of Biochemistry and Biophysics, Federal Research Center Kazan Scientific Center, Russian Academy of Sciences
编辑信件的主要联系方式.
Email: nat_rumyantseva@mail.ru
Kazan, Russia
参考
- Fazili M.A., Bashir I., Ahmad M., Yaqoob U., Geelani S.N. In vitro strategies for the enhancement of secondary metabolite production in plants: a review // Bulletin of the National Research Centre. 2022. V. 46. P. 1. https://doi.org/10.1186/s42269-022-00717-z
- Butnariu M.M., Quispe C., Herrera-Bravo J., Pentea M., Sarac I., Küşümler A.S., Özçelik B., Painuli S., Semwal P., Imran M., Gondal T.A., Emamzadeh-Yazdi S., Lapava N., Yousaf Z., Kumar M. et al. Papaver plants: current insights on phytochemical and nutritional composition along with biotechnological applications // Oxidative Medicine and Cellular Longevity / ed. Hussain T. 2022. V. 2022. P. 1. https://doi.org/10.1155/2022/2041769
- Nessler C.L. Somatic embryogenesis in the opium poppy, Papaver somniferum // Physiol. Plant. 1982. V. 55. P. 453. https://doi.org/10.1111/j.1399-3054.1982.tb04526.x
- Kassem M.A., Jacquin A. Somatic embryogenesis, rhizogenesis, and morphinan alkaloids production in two species of opium poppy // J. Biomed. Biotech. 2001. V. 1. P. 70. https://doi.org/10.1155/S1110724301000237
- Kutchan T.M., Ayabe S., Krueger R.J., Coscia E.M., Coscia C.J. Cytodifferentiation and alkaloid accumulation in cultured cells of Papaver bracteatum // Plant Cell Reports. 1983. V. 2. P. 281. https://doi.org/10.1007/BF00270181
- Kunakh V.A. Papaver somniferum L. and Papaver bracteatum Lindl. // Biotech. Med. Plants. Genetic, physiological and biochemical basis. Kiev: Logos, 2005. P. 516.
- Murashige T., Skoog F. A revised medium for rapid growth and bio assays with tobacco tissue cultures // Physiol. Plant. 1962. V. 15. P. 473. https://doi.org/10.1111/ j.1399-3054.1962.tb08052.x
- Betekhtin A., Rojek M., Jaskowiak J., Milewska-Hendel A., Kwasniewska J., Kostyukova Y., Kurczynska E., Rumyantseva N., Hasterok R. Nuclear genome stability in long-term cultivated callus lines of Fagopyrum tataricum (L.) Gaertn // PLoS ONE 2017. V. 12. e0173537 https://doi.org/10.1371/journal.pone.0173537
- Акулов А.Н., Костюкова Ю.А. Условия культивирования, гистологический и биохимический анализ каллусной культуры солодки Glycyrrhiza glabra L. // Цитология. 2021. V. 63. P. 590. https://doi.org/10.31857/S004137712106002X
- Folin O., Ciocalteu V. On tyrosine and tryptophane determinations in proteins // J. Biol. Chem. 1927. V. 73. P. 627. https://doi.org/10.1016/S0021-9258(18)84277-6
- Wagner H., Bladt S. Plant drug analysis: a thin layer chromatography atlas. 2nd ed. Berlin; New York: Springer, 1996. 384 p.
- Šamaj J., Bobák M., Blehová A., Krištin J., Auxtová-Šamajová O. Developmental SEM observations on an extracellular matrix in embryogenic calli of Drosera rotundifolia and Zea mays // Protoplasma. 1995. V. 186. P. 45. https://doi.org/10.1007/BF01276934
- Facchini P.J., Bird D.A. Developmental regulation of benzylisoquinoline alkaloid biosynthesis in opium poppy plants and tissue cultures // In Vitro Cell. Develop. Biol. Plant. 1998. V. 34. P. 69. https://doi.org/10.1007/BF02823126
- Della Rocca G., Papini A., Posarelli I., Barberini S., Tani C., Danti R., Moricca S. Ultrastructure of terpene and polyphenol synthesis in the bark of Cupressus sempervirens after Seiridium cardinale infection // Front. Microbiol. 2022. V. 13. P. 1. https://doi.org/10.3389/fmicb.2022.886331
- Alcantara J., Bird D.A., Franceschi V.R., Facchini P.J. Sanguinarine biosynthesis is associated with the endoplasmic reticulum in cultured opium poppy cells after elicitor treatment // Plant Physiol. 2005. V. 138. P. 173. https://doi.org/10.1104/ pp.105.059287
- Zhang N., Wang M., Li Y., Zhou M., Wu T., Cheng Z. TLC–MS identification of alkaloids in Leonuri herba and Leonuri fructus aided by a newly developed universal derivatisation reagent optimised by the response surface method // Phytochem. Analys. 2021. V. 32. P. 242. https://doi.org/10.1002/pca.2970
- Sieber P., Schorderet M., Ryser U., Buchala A., Kolattukudy P., Métraux J.-P., Nawrath C. Transgenic Arabidopsis plants expressing a fungal cutinase show alterations in the structure and properties of the cuticle and postgenital organ fusions // Plant Cell. 2000. V. 12. P. 721. https://doi.org/10.1105/tpc.12.5.721
- Javelle M., Vernoud V., Rogowsky P.M., Ingram G.C. Epidermis: the formation and functions of a fundamental plant tissue // New Phytol. 2011. V. 189. P. 17. https://doi.org/10.1111/j.1469-8137.2010.03514.x
- Батыгина Т.Б., Виноградова Г.Ю. Феномен полиэмбрионии. Генетическая гетерогенность семян // Онтогенез. 2007. V. 38. № 7. P. 166.
- Filonova L.H., Bozhkov P.V., Arnold S. von. Developmental pathway of somatic embryogenesis in Picea abies as revealed by time-lapse tracking // J. Exp. Bot. 2000. V. 51. P. 249. https://doi.org/10.1093/jexbot/51.343.249
- Румянцева Н.И. Арабиногалактановые белки: участие в росте и морфогенезе растений // Биохимия. 2005. V. 70. № 10. P. 1301.
- Румянцева Н.И., Шамай Й., Энзикат Х.-Ю., Сальников В.В., Балушка Ф., Фолькманн Д. Изменение поверхностной сети экстраклеточного матрикса в процессе циклического воспроизводства проэмбриональных клеточных комплексов в каллусе Fagopyrum tataricum (L.) Gaertn. // Докл. Акад. наук. 2003. V. 391. № 1. P. 123.
- Konieczny R., Bohdanowicz J., Czaplicki A., Przywara L. Extracellular matrix surface network during plant regeneration in wheat anther culture // Plant Cell Tiss. Organ Cult. 2005. V. 83. P. 201. https://doi.org/10.1007/s11240-005-5771-9
- Hazarika B. Morpho-physiological disorders in in vitro culture of plants // Scientia Horticulturae. 2006. V. 108. P. 105. https://doi.org/10.1016/j.scienta.2006.01.038
- Kerstiens G. Effects of low light intensity and high air humidity on morphology and permeability of plant cuticles, with special respect to plants cultured in vitro // Physiol. Growth Develop. Plants Cult. / ed. Lumsden P.J., Nicholas J.R., Davies W.J. Dordrecht: Springer Netherlands, 1994. P. 132.
- Johansson M., Kronestedt-Robards E., Robards A. Rose leaf structure in relation to different stages of micropropagation // Protoplasma. 1992. V. 166. P. 165. https://doi.org/10.1007/BF01322779
- Wetzstein H., Sommer H. Leaf anatomy of tissue-cultured Liquidambar styraciflua (Hamamelidaceae) during acclimatization // Amer. J. Bot. 1982. V. 69. P. 1579. https://doi.org/10.1002/j.1537-2197.1982.tb13411.x
- Matas A., Lopez-Casado G., Cuartero J., Heredia A. Relative humidity and temperature modify the mechanical properties of isolated tomato fruit cuticles // Amer. J. Bot. 2005. V. 92. P. 462. https://doi.org/10.3732/ajb.92.3.462
- Schreiber L., Skrabs M., Hartmann K., Diamantopoulos P., Simanova E., Santrucek J. Effect of humidity on cuticular water permeability of isolated cuticular membranes and leaf disks // Planta. 2001. V. 214. P. 274. https://doi.org/10.1007/s004250100615
- Yeung E. The orchid embryo – “an embryonic protocorm” // Botany. 2022. V. 100. P. 691. https://doi.org/10.1139/cjb-2022-0017
- Schuchmann R., Wellmann E. Somatic embryogenesis of tissue cultures of Papaver somniferum and Papaver orientale and its relationship to alkaloid and lipid metabolism // Plant Cell Reports. 1983. V. 2. P. 88. https://doi.org/10.1007/BF00270173
- Lančaričová A., Havrlentová M., Muchová D., Bednárová A. Oil content and fatty acids composition of poppy seeds cultivated in two localities of Slovakia // Agriculture (Polnohospodárstvo). 2016. V. 62. P. 19. https://doi.org/10.1515/agri-2016-0003
- Christodoulakis N., Tsiarta M., Fasseas C. Leaf structure and histochemical investigation in Papaver rhoeas L. (Corn Poppy, Field Poppy) // J. Herbs, Spices Med. Plants. 2013. V. 19. P. 119. https://doi.org/10.1080/10496475.2012.755942
- Singh H., Batish D., Kaur S., Arora K., Kohli K. α-Pinene inhibits growth and induces oxidative stress in roots // Ann. Bot. 2006. V. 98. P. 1261. https://doi.org/10.1093/aob/mcl213
- Slavíková L., Slavík J. Alkaloids from Papaver rupifragum BOISS. & REUT. // Collect. Czech. Chem. Commun. 1980. V. 45. P. 761. https://doi.org/10.1135/cccc19800761
- Galewsky S., Nessler C. Synthesis of morphinane alkaloids during opium poppy somatic embryogenesis // Plant Sci. 1986. V. 45. P. 215. https://doi.org/10.1016/0168-9452(86)90142-1
- Kamo K., Mahlberg P. Morphinan alkaloids: biosynthesis in plant (Papaver spp.) tissue cultures // Medic. Aromat. Plants I / ed. Bajaj Y.P.S. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. V. 4. P. 251.
- Кунах В.А., Кацан В.А. Биосинтез изохинолиновых алкалоидов мака в природе и культуре in vitro 1. Мак снотворный Papaver bracteatum L. // Укр. биохим. ж. 2003. V. 75. № 5. P. 41.
- Hagel J., Yeung E., Facchini P. Got milk? The secret life of laticifers: 12 // Trends Plant Sci. 2008. V. 13. P. 631. https://doi.org/10.1016/j.tplants.2008.09.005
- Krasteva G., Georgiev V., Pavlov A. Recent applications of plant cell culture technology in cosmetics and foods // Engin. Life Sci. 2021. V. 21. P. 68. https://doi.org/10.1002/elsc.202000078
补充文件
