Phenological Fluctuations of Secondary Metabolites in Dracocephalum charkeviczii
- Авторлар: Grigorchuk V.P.1, Nakonechnaya O.V.1, Grishchenko O.V.1, Bezdelev A.B.2
-
Мекемелер:
- Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch, Russian Academy of Sciences
- Zhirmunsky National Scientific Center of Marine Biology, Primorsky Aquarium Scientific and Educational Centre, Far Eastern Branch, Russian Academy of Sciences
- Шығарылым: Том 70, № 7 (2023)
- Беттер: 736-742
- Бөлім: ЭКСПЕРИМЕНТАЛЬНЫЕ СТАТЬИ
- URL: https://journals.rcsi.science/0015-3303/article/view/233771
- DOI: https://doi.org/10.31857/S0015330323600870
- EDN: https://elibrary.ru/BFNHUD
- ID: 233771
Дәйексөз келтіру
Аннотация
Plants from the genus Dracocephalum are a source of biologically active compounds, including rosmarinic acid and different flavonoids. Their concentration varies during the vegetation period. In order to examine changes in their content in Dracocephalum charkeviczii Prob., an endemic species of Sikhote Alin and South Kuriles, wild and cultivated plants were collected in three phenological stages: vegetation, flowering/start of fructification, and preparation for withering. By means of HPLC with UV and mass selective detection, 15 polyphenol compounds were detected in methanol extracts from the leaves. Several new compounds—coumaric acid glycoside, quercetin glycoside and rutinoside, and acacetin coumaroylglycoside—were identified in D. charkeviczii. Synthesis of most flavonoids was found to be the highest in the beginning of the vegetation period, and gradually decreased by its end. The concentration of caffeic acid derivatives (chlorogenic acid, rosmarinic acid glycoside, and dehydrorhabdosiin) increased, but the total concentration of compounds decreased by the end of vegetation.
Негізгі сөздер
Авторлар туралы
V. Grigorchuk
Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch, Russian Academy of Sciences
Email: markelova@biosoil.ru
Vladivostok, Russia
O. Nakonechnaya
Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch, Russian Academy of Sciences
Email: markelova@biosoil.ru
Vladivostok, Russia
O. Grishchenko
Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch, Russian Academy of Sciences
Email: markelova@biosoil.ru
Vladivostok, Russia
A. Bezdelev
Zhirmunsky National Scientific Center of Marine Biology, Primorsky Aquarium Scientific and Educational Centre, Far Eastern Branch, Russian Academy of Sciences
Хат алмасуға жауапты Автор.
Email: markelova@biosoil.ru
Vladivostok, Russia
Әдебиет тізімі
- Horn T., Völker J., Rühle M., Häser A., Jürges G., Nick P. Genetic authentication by RFLP versus ARMS? The case of Moldavian dragonhead (Dracocephalum moldavica L.) // Eur. Food Res. Technol. 2014. V. 238. P. 93.
- Kakasy A., Füzfai Z., Kursinszki L., Molnár-Perl I., Lemerkovics É. Analysis of nonvolatile constituens in Dracocephalum species by HPLC and GC-MS // Chromatographia. 2006. V. 63. P. S17. https://doi.org/10.1365/s10337-006-0741-x
- Bulgakov V.P., Inyushkina Y.V., Fedoreyev S. Rosmarinic acid and its derivatives: biotechnology and applications // Crit. Rev. Biotechnol. 2012. V. 32. P. 203. https://doi.org/10.3109/07388551.2011.59680 4
- Petersen M., Simmonds M.S.J. Rosmarinic acid // Phytochemistry. 2003. V. 62. P. 121. https://doi.org/10.1016/S0031-9422(02)00513-7
- Zeng Q., Jin H.Z., Quin J.J., Fu J.J., Hu X.J., Liu J.H., Yan L., Chen M., Zhang W.D. Chemical constituents of plants from the genus Dracocephalum // Chem Biodivers. 2010. V. 7. P. 1911. https://doi.org/ 0188https://doi.org/10.1002/cbdv.20090
- Weremczuk-Jeżyna I., Kuźma Ł., Kiss A.K., Grzegorczyk-Karolak I. Effect of cytokinins on shoots proliferation and rosmarinic and salvianolic acid B production in shoot culture of Dracocephalum forrestii W.W. Smith // Acta Physiol. Plant. 2018. V. 40. P. 1. https://doi.org/10.1007/s11738-018-2763-z
- Li G.S., Jiang W.I., Tian J.W., Qu G.W., Zhu H.B., Fu F.H. In vitro band in vivo antifibrotic effects of rosmarinic acid on experimental liver fibrosis // Phytomedicine. 2010. V. 17. P. 282.https://doi.org/10.1016/j.phymed.2009.05.002
- Inyunshina Y.V., Bulgakov V.P., Veselova M.V., Bryukhanov V.M., Zverev Y.F., Lampatov V.V., Azarova O.V., Tchemoded G.K., Fedoreyev S.A., Zhuravlev Y.N. High rabdosin and rosmarinic acid production in Eritrichium sericeum callus cultures and the effect of the calli on Masugi-nephritis in rats // Biosci. Biotechnol. Biochem. 2007. V. 71. P. 1286. https://doi.org/10.1271/bbb60684
- Jaiong R.W., Lou K.M., Hon P.M., Mak T.C., Woo K.S., Fung K.P. Chemistry and biological activities of caffeic acid derivatives from Salvia miltiorrhiza // Curr. Med. Chem. 2005. V. 12. P. 237.https://doi.org/10.2174/0929867053363397
- Hosni K., Msaada K., Ben Taârit M., Marzouk B. Phenological variations of secondary metabolites from Hypericum triquetrifolium Turra. // Biochem. Syst. Ecol. 2011. V. 39. P. 43. https://doi.org/10.1016/j.bse.2011.01.001
- Jordán M.J., Martínez R.M., Goodner K.L., Baldwin E.A., Sotomayor J.A. Seasonal variation of Thymus hyemalis Lange and Spanish Thymus vulgaris L. essential oils composition // Ind. Crop Prod. 2006. V. 24. P. 253–263. https://doi.org/10.1016/j.indcrop.2006.06.011
- Ebrahimi N.S., Hadian J., Mirjalili M.H., Sonboli A., Yousefzadi M. Essential oil composition and antibacterial activity of Thymus caramanicus at different phenological stages // Food Chem. 2008. V. 110. P. 927. https://doi.org/10.1016/j.foodchem.2008.02.083
- Abbasi N., Fattahi M., Ghosta Y., Sefidkon F. Volatile compounds and antifungal activity of Dracocephalum moldavica L. at different phenological stages // J. Essent. Oil Res. 2022. V. 34. P. 87. https://doi.org/10.1080/10412905.2021.1975577
- Kotyuk L.A., Ivashchenko I.V., Korablova O.A., Rakhmetov D.B. Impact of climate variability on the duration of phenological quality of Dracocephalum moldavica L. in agroclimatic zones of Polissya and Forest-Steppe in Ukraine // Ukr. J. Ecol. 2021. V. 11. P. 39. https://doi.org/10.15421/2021_240
- Fattahi M., Bonfill M., Fattahi B., Torras-Claveria L., Sefidkon F., Cusido R.M., Palazon J. Secondary metabolites profiling of Dracocephalum kotschyi Boiss at three phenological stages using uni-and multivariate methods // J. Appl. Res. Med. Aromat. Plants. 2016. V. 3. P. 177. https://doi.org/10.1016/j.jarmap.2016.04.002
- Mohtashami S., Babalar M., Mirjalili M.H. Phenological variation in medicinal traits of Dracocephalum moldavica L. (Lamiaceae) under different growing conditions // J. Herbs Spices Med. Plants. 2013. V. 19. P. 377. https://doi.org/10.1080/10496475.2013.811146
- Nakonechnaya O.V., Gafitskaya I.V., Grigorchuk V.P., Gorpenchenko T.Y., Bezdelev A.B., Zhuravlev Y.N. Polyphenol composition of Dracocephalum charkeviczii Prob. plants in in situ and in vitro conditions // Russ. J. Plant. Physiol. 2022. V. 69. P. 27. https://doi.org/10.1134/S1021443722010149
- Безделев А.Б., Безделева Т.А. Жизненные формы семенных растений российского Дальнего Востока. Владивосток: Дальнаука, 2006. 296 с.
- Kozhevnikov A.E., Kozhevnikova Z.V., Kwak M., Lee B.Y. Illustrated flora of the Primorsky Territory [Russian Far East]. National Institute of Biological Resources, Incheon, 2019. 1126 c.
- Пробатова Н.С., Баркалов В.Ю., Нечаев В.А. Хромосомные числа сосудистых растений в Приморском крае: дальнейшее изучение // Ученые записки ЗабГУ. Серия: Естественные науки. 2016. Т. 11. № 1. С. 27.
- Weremczuk-Jeżyna I., Skała E., Kuźma Ł., Kiss A.K., Grzegorczyk-Karolak I. The effect of purine-type cytokinin on the proliferation and production of phenolic compounds in transformed shoots of Dracocephalum forrestii // J. Biotechnol. 2019. V. 306. P. 125. https://doi.org/10.1016/j.jbiotec.2019.09.014
- Vassallo A., Cioffi G., De Simone F., Braca A., Sanogo R., Vanella A., Russo A., De Tommasi N. New flavonoid glycosides from Chrozophora senegalensis and their antioxidant activity // Nat. Prod. Commun. 2006. V. 1. P. 1089. https://doi.org/10.1177/1934578X0600101204
- Holser R.A. Lipid encapsulated phenolic compounds by fluidization // J. Encapsulation Adsorpt. Sci. 2013. V. 3. P. 13. https://doi.org/10.4236/jeas.2013.31002
- Bystrom L.M., Lewis B.A., Brown D.L., Rodriguez E., Obendorf R.L. Characterisation of phenolics by LC–UV/Vis, LC–MS/MS and sugars by GC in Melicoccus bijugatus Jacq. “Montgomery” fruits // Food Chem. 2008. V. 111. P. 1017. https://doi.org/10.1016/j.foodchem.2008.04.058
- Allen F., Greiner R., Wishart D. Competitive fragmentation modeling of ESI-MS/MS spectra for putative metabolite identification // Metabolomics. 2015. V. 11. P. 98. https://doi.org/10.1007/s11306-014-0676-4
- Yosr Z., Hnia Ch., Rim T., Mohamed B. Changes in essential oil composition and phenolic fraction in Rosmarinus officinalis L. var. typicus Batt. organs during growth and incidence on the antioxidant activity // Ind. Crops Prod. 2013. V. 43. P. 412. https://doi.org/10.1016/j.indcrop.2012.07.044
- Aziz E.E., Ezz El-Din A.A., Omer E.A. Quantitative and qualitative changes in essential oil of Dracocephalum moldavica at different growth stages // Int. J. Acad. Res. 2010. V. 2. P. 198.
- Del Bano M.J., Lorente J., Castillo J., Benavente-García O., Del Rio J.A., Ortuño A., Quirin K.-W., Gerard D. Phenolic diterpenes, flavones, and rosmarinic acid distribution during the development of leaves, flowers, stems, and roots of Rosmarinus officinalis antioxidant activity // J. Agric. Food Chem. 2003. V. 51. P. 4247. https://doi.org/10.1021/jf0300745
- Winkel-Shirley B. Biosynthesis of flavonoids and effects of stress // Curr. Opin. Plant Biol. 2002. V. 5. P. 218. https://doi.org/10.1016/S1369-5266(02)00256-X
- Fattahi M., Nazeri V., Torras-Claveria L., Sefidkon F., Cusido R.M., Zamani Z., Palazon J. Identification and quantification of leaf surface flavonoids in wild-growing populations of Dracocephalum kotschyi by LC–DAD–ESI–MS // Food Chem. 2013. V. 141. P. 139. https://doi.org/10.1016/j.foodchem.2013.03.019
