Furanocoumarins: History of Research, Diversity, Synthesis, Physiological Role in the Plant, and Medical Application

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The review is devoted to furanocoumarins, a class of substances that are a combination of pyrone,
benzene, and furan rings, possessing a system of conjugated double bonds (which in some cases can be disrupted). This group of compounds is currently being widely studied due to its phototoxic and medicinal properties. The work examines furanocoumarins of natural origin, identified in the family Umbelliferae, or Apiaceae, their diversity is structured; the history of their study, the currently known stages of their biosynthesis,
and examples of their biological activity in plants, cell culture and for medical use are described.

作者简介

V. Shtratnikova

Belozersky Research Institute of Physical and Chemical Biology; Moscow State University

编辑信件的主要联系方式.
Email: vtosha@yandex.ru
Moscow, Russia

参考

  1. Кузнецова Г.А. Природные кумарины и фурокумарины. Л.: Наука, 1967. 248 с.
  2. Пименов М.Г. Перечень растений – источников кумариновых соединений. Л.: Наука, 1971. 202 с.
  3. Malikov V.M., Saidkhodzhaev A.I., Aripov Kh.N. Coumarins: Plants, structure, properties. Chapter I. // Chem. Nat. Compd. 1998. V. 34. P. 202. https://doi.org/10.1007/BF02249149
  4. Murray R.D.H. Naturally occurring coumarins // Fortschritte der Chemie organischer Naturstoffe / Progress in the Chemistry of Organic Natural Products / Eds. W. Herz et al. Vienna: Springer Vienna, 2002. V. 83. P. 1. https://doi.org/10.1007/978-3-7091-6172-2_1
  5. Bruni R., Barreca D., Protti M., Brighenti V., Righetti L., Anceschi L., Mercolini L., Benvenuti S., Gattuso G., Pellati F. Botanical sources, chemistry, analysis, and biological activity of furanocoumarins of pharmaceutical interest // Molecules. 2019. V. 24. P. 2163. https://doi.org/10.3390/molecules24112163
  6. Sarker S.D., Nahar L. Progress in the chemistry of naturally occurring coumarins // Progress in the Chemistry of Organic Natural Products 106 / Eds. A.D. Kinghorn et al. Springer International Publishing, 2017. V. 106. P. 241. https://doi.org/10.1007/978-3-319-59542-9_3
  7. Schlatter C.H. Ueber Peucedaninum, einen neuen eigenthümlichen Pflanzenstoff aus der Rad. Peucedani // Ann. Pharm. 1833. V. 5. P. 201. https://doi.org/10.1002/jlac.18330050209
  8. Ohme C. Ueber die Zusammensetzung des Bergamottöls // Ann. Pharm. 1839. V. 31. P. 316. https://doi.org/10.1002/jlac.18390310309
  9. Schnedermann G., Winckler F.L. Ueber das Athamantin // Ann. Chem. Pharm. 1844. V. 51. P. 315. https://doi.org/10.1002/jlac.18440510303
  10. Kadyrova F.R., Shamsutdinov M.I., Shakirov T.T., Abubakirov N.K., Usmanov B.Z., Khamidkhodzhaev S.A., Sultanov M.B., Khanov M.T. Photosensitizing agent “psoberan” for treating (vitiligo) leukoderma and nidulate baldness. SU patent 591188, 1978.
  11. Zhu C. Chinese medical preparation of psoralen and isopsoralen for treating vitiligo and psoriasis, and its preparation. CN patent 1839922, 2006.
  12. Chen J., Huang A., Ren F., Cheng S., Ren J. Application of sphondin as active ingredient in preparing medicine for treating hepatitis B. CN patent 113069445, 2021.
  13. Rui Y., Li T., Qiu Y., Chu Z. Application of imperatorin in preparing the medicine for preventing and treating ischemic brain apoplexy. CN patent 1380059, 2002.
  14. Sin K.H. Use of byakangelicin and its tertiary-O-methyl derivative for treating cataract. WO patent 9401106, 1994.
  15. Yu F. Health product containing oxypeucedanin and application of oxypeucedanin for treating neurosis. CN patent 103948036, 2014.
  16. Chang Y., Wang Y., Li J., He J., Pang X., Liu R., Chen S., Liang C. Columbianadin in preparing pharmaceutical drug for treating and preventing rheumatoid arthritis. CN patent 112791082, 2021.
  17. Liang Q., Wang Y., Wang Q., Xu H., Shi Q., Wang T., Qi X., Jia Q., Wang Y., Liu Y., Wang X., Xu C., Liu L., Zhang L., Liu S., et al. Small molecule compound for treating rheumatic arthritis and application thereof. CN patent 109091477, 2018.
  18. Rodrigues J.L., Gomes D., Rodrigues L.R. Challenges in the heterologous production of furanocoumarins in Escherichia coli // Molecules. 2022. V. 27. P. 7230. https://doi.org/10.3390/molecules27217230
  19. Zhao Y., Jian X., Wu J., Huang W., Huang C., Luo J., Kong L. Elucidation of the biosynthesis pathway and heterologous construction of a sustainable route for producing umbelliferone // J. Biol. Eng. 2019. V. 13. P. 44. https://doi.org/10.1186/s13036-019-0174-3
  20. Yang W.-Q., Song Y.-L., Zhu Z.-X., Su C., Zhang X., Wang J., Shi S.-P., Tu P.-F. Anti-inflammatory dimeric furanocoumarins from the roots of Angelica dahurica // Fitoterapia. 2015. V. 105. P. 187. https://doi.org/10.1016/j.fitote.2015.07.006
  21. Stanjek V., Boland W. Biosynthesis of angular furanocoumarins: mechanism and stereochemistry of the oxidative dealkylation of columbianetin to angelicin in Heracleum mantegazzianum (Apiaceae) // HCA. 1998. V. 81. P. 1596. https://doi.org/10.1002/(SICI)1522-2675(19980909)81 : 9<1596::AID-HLCA1596>3.0.CO;2-F
  22. Dugrand-Judek A., Olry A., Hehn A., Costantino G., Ollitrault P., Froelicher Y., Bourgaud F. The distribution of coumarins and furanocoumarins in Citrus species closely matches citrus phylogeny and reflects the organization of biosynthetic pathways // PLoS One. 2015. V. 10. P. e0142757. https://doi.org/10.1371/journal.pone.0142757
  23. Park J.H., Park N.I., Xu H., Park S.U. Cloning and characterization of phenylalanine ammonia-lyase and cinnamate 4-hydroxylase and pyranocoumarin biosynthesis in Angelica gigas // J. Nat. Prod. 2010. V. 73. P. 1394. https://doi.org/10.1021/np1003356
  24. Sui Z., Luo J., Yao R., Huang C., Zhao Y., Kong L. Functional characterization and correlation analysis of phenylalanine ammonia-lyase (PAL) in coumarin biosynthesis from Peucedanum praeruptorum Dunn // Phytochemistry. 2019. V. 158. P. 35. https://doi.org/10.1016/j.phytochem.2018.11.006
  25. Gravot A., Larbat R., Hehn A., Lièvre K., Gontier E., Goergen J.-L., Bourgaud F. Cinnamic acid 4-hydroxylase mechanism-based inactivation by psoralen derivatives: cloning and characterization of a C4H from a psoralen producing plant—Ruta graveolens—exhibiting low sensitivity to psoralen inactivation // Arch. Biochem. Biophys. 2004. V. 422. P. 71. https://doi.org/10.1016/j.abb.2003.12.013
  26. Hübner S., Hehmann M., Schreiner S., Martens S., Lukačin R., Matern U. Functional expression of cinnamate 4-hydroxylase from Ammi majus L. // Phytochemistry. 2003. V. 64. P. 445. https://doi.org/10.1016/S0031-9422(03)00265-6
  27. Liu T., Yao R., Zhao Y., Xu S., Huang C., Luo J., Kong L. Cloning, functional characterization and site-directed mutagenesis of 4-coumarate: coenzyme A ligase (4CL) involved in coumarin biosynthesis in Peucedanum praeruptorum Dunn // Front. Plant Sci. 2017. V. 8. https://doi.org/10.3389/fpls.2017.00004
  28. Vialart G., Hehn A., Olry A., Ito K., Krieger C., Larbat R., Paris C., Shimizu B., Sugimoto Y., Mizutani M., Bourgaud F. A 2-oxoglutarate-dependent dioxygenase from Ruta graveolens L. exhibits p-coumaroyl CoA 2′-hydroxylase activity (C2′H): a missing step in the synthesis of umbelliferone in plants: C2′H involved in umbelliferone synthesis // The Plant J. 2012. V. 70. P. 460. https://doi.org/10.1111/j.1365-313X.2011.04879.x
  29. Yao R., Zhao Y., Liu T., Huang C., Xu S., Sui Z., Luo J., Kong L. Identification and functional characterization of a p-coumaroyl CoA 2′-hydroxylase involved in the biosynthesis of coumarin skeleton from Peucedanum praeruptorum Dunn // Plant Molecular Biology. 2017. V. 95. P. 199. https://doi.org/10.1007/s11103-017-0650-4
  30. Roselli S., Olry A., Vautrin S., Coriton O., Ritchie D., Galati G., Navrot N., Krieger C., Vialart G., Bergès H., Bourgaud F., Hehn A. A bacterial artificial chromosome (BAC) genomic approach reveals partial clustering of the furanocoumarin pathway genes in parsnip // Plant J. 2017. V. 89. P. 1119. https://doi.org/10.1111/tpj.13450
  31. Bourgaud F., Olry A., Hehn A. Recent advances in molecular genetics of furanocoumarin synthesis in higher plants // Recent Advances in Redox Active Plant and Microbial Products: From Basic Chemistry to Widespread Applications in Medicine and Agriculture / Eds. C. Jacob et al. Dordrecht: Springer Netherlands, 2014. P. 363. https://doi.org/10.1007/978-94-017-8953-0_14
  32. Caporale G., Dall’Acqua F., Marciani S., Capozzi A. Studies on the biosynthesis of psoralen and bergapten in the leaves of Ficus carica // Z. Naturforsch. B. 1970. V. 25. P. 700. https://doi.org/10.1515/znb-1970-0709
  33. Steck W., Brown S.A. Biosynthesis of angular furanocoumarins // Can. J. Biochem. 1970. V. 48. P. 872. https://doi.org/10.1139/o70-137
  34. Innocenti G., Dall’Acqua F., Caporale G. Biosynthesis of linear furocoumarins: further studies on the role of 7-dimethylsuberosin // Atti Ist. Veneto Sci., Lett. Arti, Cl. Sci. Mat. Nat. 1979. V. 137. P. 219.
  35. Brown S.A., Steck W. 7-Demethylsuberosin and osthenol as intermediates in furanocoumarin biosynthesis // Phytochemistry. 1973. V. 12. P. 1315. https://doi.org/10.1016/0031-9422(73)80558-8
  36. Brown S.A., El-Dakhakhny M., Steck W. Biosynthesis of linear furanocoumarins // Can. J. Biochem. 1970. V. 48. P. 863. https://doi.org/10.1139/o70-136
  37. Hamerski D., Matern U. Elicitor-induced biosynthesis of psoralens in Ammi majus L. suspension cultures. Microsomal conversion of demethylsuberosin into (+)-marmesin and psoralen // Eur. J. Biochem. 1988. V. 171. P. 369. https://doi.org/10.1111/j.1432-1033.1988.tb13800.x
  38. Ellis B.E., Brown S.A. Isolation of dimethylallylpyrophosphate:umbelliferone dimethylallyltransferase from Ruta graveolens // Can. J. Biochem. 1974. V. 52. P. 734. https://doi.org/10.1139/o74-104
  39. Karamat F., Olry A., Munakata R., Koeduka T., Sugiyama A., Paris C., Hehn A., Bourgaud F., Yazaki K. A coumarin-specific prenyltransferase catalyzes the crucial biosynthetic reaction for furanocoumarin formation in parsley // Plant J. 2014. V. 77. P. 627. https://doi.org/10.1111/tpj.12409
  40. Munakata R., Olry A., Karamat F., Courdavault V., Sugiyama A., Date Y., Krieger C., Silie P., Foureau E., Papon N., Grosjean J., Yazaki K., Bourgaud F., Hehn A. Molecular evolution of parsnip (Pastinaca sativa) membrane-bound prenyltransferases for linear and/or angular furanocoumarin biosynthesis // New Phytol. 2016. V. 211. P. 332. https://doi.org/10.1111/nph.13899
  41. Munakata R., Kitajima S., Nuttens A., Tatsumi K., Takemura T., Ichino T., Galati G., Vautrin S., Bergès H., Grosjean J., Bourgaud F., Sugiyama A., Hehn A., Yazaki K. Convergent evolution of the UbiA prenyltransferase family underlies the independent acquisition of furanocoumarins in plants // New Phytol. 2020. V. 225. P. 2166. https://doi.org/10.1111/nph.16277
  42. Han L., Zhang L., He Y., Liao L., Li J., Xu S., Zhao Y., Bian X., Xia Y. Three carbon-/oxygen-prenyltransferases responsible for furanocoumarin synthesis in Angelica dahurica // Ind. Crop. Prod. 2023. V. 200. P. 116814. https://doi.org/10.1016/j.indcrop.2023.116814
  43. Larbat R., Kellner S., Specker S., Hehn A., Gontier E., Hans J., Bourgaud F., Matern U. Molecular cloning and functional characterization of psoralen synthase, the first committed monooxygenase of furanocoumarin biosynthesis // J. Biol. Chem. 2007. V. 282. P. 542. https://doi.org/10.1074/jbc.M604762200
  44. Larbat R., Hehn A., Hans J., Schneider S., Jugdé H., Schneider B., Matern U., Bourgaud F. Isolation and functional characterization of CYP71AJ4 encoding for the first P450 monooxygenase of angular furanocoumarin biosynthesis // J. Biol. Chem. 2009. V. 284. P. 4776. https://doi.org/10.1074/jbc.M807351200
  45. Dueholm B., Krieger C., Drew D., Olry A., Kamo T., Taboureau O., Weitzel C., Bourgaud F., Hehn A., Simonsen H.T. Evolution of substrate recognition sites (SRSs) in cytochromes P450 from Apiaceae exemplified by the CYP71AJ subfamily // BMC Evol Biol. 2015. V. 15. P. 122. https://doi.org/10.1186/s12862-015-0396-z
  46. Jian X., Zhao Y., Wang Z., Li S., Li L., Luo J., Kong L. Two CYP71AJ enzymes function as psoralen synthase and angelicin synthase in the biosynthesis of furanocoumarins in Peucedanum praeruptorum Dunn // Plant Mol. Biol. 2020. V. 104. P. 327. https://doi.org/10.1007/s11103-020-01045-4
  47. Ren H., Yu Y., Xu Y., Zhang X., Tian X., Gao T. GlPS1 overexpression accumulates coumarin secondary metabolites in transgenic Arabidopsis // Plant Cell Tiss. Organ. 2023. V. 152. P. 539. https://doi.org/10.1007/s11240-022-02427-w
  48. Villard C., Munakata R., Kitajima S., Velzen R., Schranz M.E., Larbat R., Hehn A. A new P450 involved in the furanocoumarin pathway underlies a recent case of convergent evolution // New Phytol. 2021. V. 231. P. 1923. https://doi.org/10.1111/nph.17458
  49. Bourgaud F., Hehn A., Larbat R., Doerper S., Gontier E., Kellner S., Matern U. Biosynthesis of coumarins in plants: a major pathway still to be unravelled for cytochrome P450 enzymes // Phytochem. Rev. 2006. V. 5. P. 293. https://doi.org/10.1007/s11101-006-9040-2
  50. Brown S.A., Sampathkumar S. The biosynthesis of isopimpinellin // Can. J. Biochem. 1977. V. 55. P. 686. https://doi.org/10.1139/o77-099
  51. Caporale G., Innocenti G., Guiotto A., Rodighiero P., Dall’Acqua F. Biogenesis of linear O-alkylfuranocoumarins: A new pathway involving 5-hydroxymarmesin // Phytochemistry. 1981. V. 20. P. 1283. https://doi.org/10.1016/0031-9422(81)80022-2
  52. Dall’Acqua F., Capozzi A., Marciani S., Caporale G. Biosynthesis of furocoumarins: further studies on Ruta graveolens // Z. Naturforsch. B. 1972. V. 27. P. 813. https://doi.org/10.1515/znb-1972-0717
  53. Hamerski D., Matern U. Biosynthesis of psoralens. Psoralen 5-monooxygenase activity from elicitor-treated Ammi majus cells // FEBS Lett. 1988. V. 239. P. 263. https://doi.org/10.1016/0014-5793(88)80930-X
  54. Krieger C., Roselli S., Kellner-Thielmann S., Galati G., Schneider B., Grosjean J., Olry A., Ritchie D., Matern U., Bourgaud F., Hehn A. The CYP71AZ P450 subfamily: A driving factor for the diversification of coumarin biosynthesis in Apiaceous plants // Front. Plant Sci. 2018. V. 9. P. 820. https://doi.org/10.3389/fpls.2018.00820
  55. Hehmann M., Lukačin R., Ekiert H., Matern U. Furanocoumarin biosynthesis in Ammi majus L.: Cloning of bergaptol O-methyltransferase // Eur. J. Biochem. 2004. V. 271. P. 932. https://doi.org/10.1111/j.1432-1033.2004.03995.x
  56. Ishikawa A., Kuma T., Sasaki H., Sasaki N., Ozeki Y., Kobayashi N., Kitamura Y. Constitutive expression of bergaptol O-methyltransferase in Glehnia littoralis cell cultures // Plant Cell Rep. 2009. V. 28. P. 257. https://doi.org/10.1007/s00299-008-0631-9
  57. Lo S.-C., Chung P.-E., Wang C.-S. Molecular cloning and functional analysis of bergaptol-O-methyltransferase from Angelica dahurica (Bai Zhi) and using it to efficiently produce bergapten in E. coli. // Bot. Stud. 2012. V. 53. P. 197.
  58. Zhao Y., Wang N., Zeng Z., Xu S., Huang C., Wang W., Liu T., Luo J., Kong L. Cloning, functional characterization, and catalytic mechanism of a bergaptol O-methyltransferase from Peucedanum praeruptorum Dunn // Front. Plant Sci. 2016. V. 7. P. 722. https://doi.org/10.3389/fpls.2016.00722
  59. Zhao Y., Wang N., Wu H., Zhou Y., Huang C., Luo J., Zeng Z., Kong L. Structure-based tailoring of the first coumarins-specific bergaptol O-methyltransferase to synthesize bergapten for depigmentation disorder treatment // J. Adv. Res. 2020. V. 21. P. 57. https://doi.org/10.1016/j.jare.2019.10.003
  60. Zhang Y., Bai P., Zhuang Y., Liu T. Two O -methyltransferases mediate multiple methylation steps in the biosynthesis of coumarins in Cnidium monnieri // J. Nat. Prod. 2022. V. 85. P. 2116. https://doi.org/10.1021/acs.jnatprod.2c00410
  61. Innocenti G., Dall’Acqua F., Caporale G. The role of 5,8-dihydroxypsoralen in the biosynthesis of isopimpinellin // Phytochemistry. 1983. V. 22. P. 2207. https://doi.org/10.1016/S0031-9422(00)80148-X
  62. Сацыперова И.Ф., Комиссаренко Н.Ф. Хемосистематика рода Heracleum L. флоры СССР. Сообщение 3. Секция Wendia (Hoffm.) Manden. и Apiifolia Manden.; биосинтез кумаринов и эволюция рода // Раст. ресур. 1978. Т. 14. С. 482.
  63. Floss H.-G., Mothes U. On the biosynthesis of furocoumarins in Pimpinella magna // Phytochemistry. 1966. V. 5. P. 161. https://doi.org/10.1016/S0031-9422(00)85094-3
  64. Dall’Acqua F., Innocenti G., Caporale G. Biosynthesis of O-alkyl-furocoumarins // Planta Med. 1975. V. 27. P. 343. https://doi.org/10.1055/s-0028-1097812
  65. Innocenti G., Dall’Acqua F., Rodighiero P., Caporale G. Biosynthesis of O–alkylfurocoumarins in Angelica archangelica // Planta Med. 1978. V. 34. P. 167. https://doi.org/10.1055/s-0028-1097429
  66. Munakata R., Olry A., Takemura T., Tatsumi K., Ichino T., Villard C., Kageyama J., Kurata T., Nakayasu M., Jacob F., Koeduka T., Yamamoto H., Moriyoshi E., Matsukawa T., Grosjean J. et al. Parallel evolution of UbiA superfamily proteins into aromatic O -prenyltransferases in plants // P. Natl. Acad. Sci. USA. 2021. V. 118: e2022294118. https://doi.org/10.1073/pnas.2022294118
  67. Денисова Г.А., Драницына Ю.А. Локализация соединений кумаринового ряда в тканях плода и корня Archangelica decurrens LDB. // Бот. журн. 1963. Т. 48. С. 1830.
  68. Денисова Г.А., Керимов С.Ш. Локализация кумариновых соединений в тканях плода и корня Hippomarathrum microcarpum (Bieb.) B. Fedtsch. // Раст. ресур. 1966. Т. 2. С. 182.
  69. Денисова Г.А., Флоря В.Н. Локализация кумариновых соединений в различных органах и тканях Seseli campestre Bess. // Раст. ресур. 1970. Т. 6. С. 337.
  70. Camm E.L., Wat C.-K., Towers G.H.N. An assessment of the roles of furanocoumarins in Heracleum lanatum // Can. J. Bot. 1976. V. 54. P. 2562. https://doi.org/10.1139/b76-275
  71. Jahnen W., Hahlbrock K. Differential regulation and tissue-specific distribution of enzymes of phenylpropanoid pathways in developing parsley seedlings // Planta. 1988. V. 173. P. 453. https://doi.org/10.1007/BF00958957
  72. Zobel A., Brown S., Glowniak K. Localization of furanocoumarins in leaves, fruits, and seeds of plants causing contact photodermatitis // Planta Med. 1990. V. 56. P. 571. https://doi.org/10.1055/s-2006-961167
  73. Zobel A., March R.E. Autofluorescence reveals different histological localizations of furanocoumarins in fruit of some Umbelliferae and Leguminosae // Ann. Bot. 1993. V. 71. P. 251. https://doi.org/10.1006/anbo.1993.1032
  74. Zobel A.M., Brown S.A. Furanocoumarin concentrations in fruits and seeds of Angelica archangelica // Environ. Exp. Bot. 1991. V. 31. P. 447. https://doi.org/10.1016/0098-8472(91)90043-N
  75. Zobel A.M., Brown S.A. Furanocoumarins on the surface of callus cultures from species of the Rutaceae and Umbelliferae // Can. J. Bot. 1993. V. 71. P. 966. https://doi.org/10.1139/b93-109
  76. Weryszko-Chmielewska E., Chwil M. Localisation of furanocoumarins in the tissues and on the surface of shoots of Heracleum sosnowskyi // Botany. 2017. V. 95. P. 1057. https://doi.org/10.1139/cjb-2017-0043
  77. Gao H., Li Q. Study on the spatial distribution of coumarins in Angelica dahurica root by MALDI-TOF-MSI // Phytochem. Analysis. 2022. P. 139. https://doi.org/10.1002/pca.3186
  78. Lohr C., Raquet N., Schrenk D. Application of the concept of relative photomutagenic potencies to selected furocoumarins in V79 cells // Toxicol. in Vitro. 2010. V. 24. P. 558. https://doi.org/10.1016/j.tiv.2009.10.017
  79. Raquet N., Schrenk D. Relative photomutagenicity of furocoumarins and limettin in the hypoxanthine phosphoribosyl transferase assay in v79 cells // Chem. Res. Toxicol. 2009. V. 22. P. 1639. https://doi.org/10.1021/tx9002287
  80. Pathak M.A., Joshi P.C. Production of active oxygen species (1O2 and ) by psoralens and ultraviolet radiation (320–400 nm) // BBA-Gen. Subjects. 1984. V. 798. P. 115. https://doi.org/10.1016/0304-4165(84)90018-710.1016/0304-4165(84)90018-7
  81. Melough M.M., Cho E., Chun O.K. Furocoumarins: A review of biochemical activities, dietary sources and intake, and potential health risks // Food Chem. Toxicol. 2018. V. 113. P. 99. https://doi.org/10.1016/j.fct.2018.01.030
  82. Rzymski P., Klimaszyk P., Poniedziałek B., Karczewski J. Health threat associated with Caucasian giant hogweeds: awareness among doctors and general public in Poland // Cutan. Ocul. Toxicol. 2015. V. 34. P. 203. https://doi.org/10.3109/15569527.2014.948685
  83. Stegelmeier B.L., Colegate S.M., Knoppel E.L., Rood K.A., Collett M.G. Wild parsnip (Pastinaca sativa)-induced photosensitization // Toxicon. 2019. V. 167. P. 60. https://doi.org/10.1016/j.toxicon.2019.06.007
  84. Вичканова С.А., Рубинчик М.А., Адгина В.В., Изосимова С.Б., Макаров Л.В., Шипулина Л.Д., Горюнова Л.В. Антимикробная и противовирусная активность некоторых природных кумаринов // Раст. Ресур. 1973. V. 9. P. 370.
  85. Oueslati M.H., Guetat A., Bouajila J., Alzahrani A.K., Basha J. Deverra tortuosa (Desf.) DC from Saudi Arabia as a new source of marmin and furanocoumarins derivatives with α-glucosidase, antibacterial and cytotoxic activities // Heliyon. 2021. V. 7: e06656. https://doi.org/10.1016/j.heliyon.2021.e06656
  86. Golfakhrabadi F., Shams Ardakani M.R., Saeidnia S., Akbarzadeh T., Yousefbeyk F., Jamalifar H., Khanavi M. In vitro antimicrobial and acetylcholinesterase inhibitory activities of coumarins from Ferulago carduchorum // Med. Chem. Res. 2016. V. 25. P. 1623. https://doi.org/10.1007/s00044-016-1595-x
  87. Karakaya S., Şimşek D., Özbek H., Güvenalp Z., Altanlar N., Kazaz C., Kiliç C.S. Antimicrobial activities of extracts and isolated coumarins from the roots of four Ferulago apecies growing in Turkey // Iran J. Pharm. Res. 2019. V. 18. P. 1516. https://doi.org/10.22037/ijpr.2019.1100718
  88. Rajtar B., Skalicka-Woźniak K., Świątek Ł., Stec A., Boguszewska A., Polz-Dacewicz M. Antiviral effect of compounds derived from Angelica archangelica L. on Herpes simplex virus-1 and Coxsackievirus B3 infections // Food Chem. Toxicol. 2017. V. 109. P. 1026. https://doi.org/10.1016/j.fct.2017.05.011
  89. Lee B.W., Ha T.K.Q., Cho H.M., An J.-P., Kim S.K., Kim C.-S., Kim E., Oh W.K. Antiviral activity of furanocoumarins isolated from Angelica dahurica against influenza a viruses H1N1 and H9N2 // J. Ethnopharmacol. 2020. V. 259. P. 112945. https://doi.org/10.1016/j.jep.2020.112945
  90. Cho H.-J., Jeong S.-G., Park J.-E., Han J.-A., Kang H.-R., Lee D., Song M.J. Antiviral activity of angelicin against gammaherpesviruses // Antivir. Res. 2013. V. 100. P. 75. https://doi.org/10.1016/j.antiviral.2013.07.009
  91. Yajima T., Munakata K. Phloroglucinol-type furocoumarins, a group of potent naturally-occurring insect antifeedants // Agr. Bio. Chem. 1979. V. 43. P. 1701. https://doi.org/10.1080/00021369.1979.10863698
  92. Muckensturm B., Duplay D., Robert P.C., Simonis M.T., Kienlen J.-C. Substances antiappétantes pour insectes phytophages présentes dans Angelica silvestris et Heracleum sphondylium // Biochem. Syst. Ecol. 1981. V. 9. P. 289. https://doi.org/10.1016/0305-1978(81)90010-7
  93. Berenbaum M.R. Patterns of furanocoumarin production and insect herbivory in a population of wild parsnip (Pastinaca sativa L.) // Oecologia. 1981. V. 49. P. 236. https://doi.org/10.1007/BF00349195
  94. Ode P.J., Berenbaum M.R., Zangerl A.R., Hardy I.C.W. Host plant, host plant chemistry and the polyembryonic parasitoid Copidosoma sosares : indirect effects in a tritrophic interaction // Oikos. 2004. V. 104. P. 388. https://doi.org/10.1111/j.0030-1299.2004.12323.x
  95. Jogesh T., Stanley M.C., Berenbaum M.R. Evolution of tolerance in an invasive weed after reassociation with its specialist herbivore // J. Evol. Biol. 2014. V. 27. P. 2334. https://doi.org/10.1111/jeb.12469
  96. Lois R., Hahlbrock K. Differential wound activation of members of the phenylalanine ammonia-lyase and 4-coumarate: coa ligase gene families in various organs of parsley plants // Z. Naturforsch. C. 1992. V. 47. P. 90. https://doi.org/10.1515/znc-1992-1-216
  97. Schmelzer E., Kruger-Lebus S., Hahlbrock K. Temporal and spatial patterns of gene expression around sites of attempted fungal infection in parsley leaves. // Plant Cell. 1989. V.1. P. 993. https://doi.org/10.1105/tpc.1.10.993
  98. Jahnen W., Hahlbrock K. Cellular localization of nonhost resistance reactions of parsley (Petroselinum crispum) to fungal infection // Planta. 1988. V. 173. P. 197. https://doi.org/10.1007/BF00403011
  99. Ellard-Ivey M., Douglas C.J. Role of jasmonates in the elicitor- and wound-inducible expression of defense genes in parsley and transgenic tobacco // Plant Physiol. 1996. V. 112. P. 183. https://doi.org/10.1104/pp.112.1.183
  100. Kitamura Y., Ikenaga T., Ooe Y., Hiraoka N., Mizukami H. Induction of furanocoumarin biosynthesis in Glehnia littoralis cell suspension cultures by elicitor treatment // Phytochemistry. 1998. V. 48. P. 113. https://doi.org/10.1016/s0031-9422(97)00849-2
  101. Hamerski D., Schmitt D., Matern U. Induction of two prenyltransferases for the accumulation of coumarin phytoalexins in elicitor-treated Ammi majus cell suspension cultures // Phytochemistry. 1990. V. 29. P. 1131. https://doi.org/10.1016/0031-9422(90)85417-E
  102. Parast B.M., Chetri S.K., Sharma K., Agrawal V. In vitro isolation, elicitation of psoralen in callus cultures of Psoralea corylifolia and cloning of psoralen synthase gene // Plant Physiol. Bioch. 2011. V. 49. P. 1138. https://doi.org/10.1016/j.plaphy.2011.03.017
  103. Wendorff H., Matern U. Differential response of cultured parsley cells to elicitors from two non-pathogenic strains of fungi. Microsomal conversion of (+)marmesin into psoralen // Eur. J. Biochem. 1986. V. 161. P. 391. https://doi.org/10.1111/j.1432-1033.1986.tb10458.x
  104. Sumorek-Wiadro J., Zając A., Maciejczyk A., Jakubowicz-Gil J. Furanocoumarins in anticancer therapy – For and against // Fitoterapia. 2020. V. 142. P. 104492. https://doi.org/10.1016/j.fitote.2020.104492
  105. Elkhawaga O.Y., Ellety M.M., Mofty S.O., Ghanem M.S., Mohamed A.O. Review of natural compounds for potential psoriasis treatment // Inflammopharmacology. 2023. V. 31. P. 1183. https://doi.org/10.1007/s10787-023-01178-0
  106. Ahmed S., Khan H., Aschner M., Mirzae H., Kupeli Akkol E., Capasso R. Anticancer potential of furanocoumarins: mechanistic and therapeutic aspects // IJMS. 2020. V. 21. P. 5622. https://doi.org/10.3390/ijms21165622
  107. Wasserman G.A., Llewellyn M.W., Ramsay C.A., Haberman H.F. Treatment of psoriasis with orally administered 8-methoxypsoralen and long-wavelength ultraviolet radiation. // Can. Med. Assoc. J. 1978. V. 118. P. 1379
  108. Couperus M. Ammoidin (xanthotoxin) in the treatment of vitiligo // Calif. Med. 1954. V. 81. P. 402
  109. Almutawa F., Alnomair N., Wang Y., Hamzavi I., Lim H.W. Systematic review of uv-based therapy for psoriasis // Am. J. Clin. Dermatol. 2013. V. 14. P. 87. https://doi.org/10.1007/s40257-013-0015-y
  110. Quintão W.D.S.C., Alencar-Silva T., Borin M.D.F., Rezende K.R., Albernaz L.C., Cunha-Filho M., Gratieri T., De Carvalho J.L., Sá-Barreto L.C.L., Gelfuso G.M. Microemulsions incorporating Brosimum gaudichaudii extracts as a topical treatment for vitiligo: In vitro stimulation of melanocyte migration and pigmentation // J. Mol. Liq. 2019. V. 294. P. 111685. https://doi.org/10.1016/j.molliq.2019.111685
  111. Dasari S., Choudhary A., Madke B. Psoriasis: a primer for general physicians // Cureus. 2023. https://doi.org/10.7759/cureus.38037
  112. Pang Y., Wu S., He Y., Nian Q., Lei J., Yao Y., Guo J., Zeng J. Plant-derived compounds as promising therapeutics for vitiligo // Front. Pharmacol. 2021. V. 12. P. 685116. https://doi.org/10.3389/fphar.2021.685116
  113. Никонов Г.К. Фуранокумарины как группа веществ растительного происхождения с противораковой активностью // Труды ВИЛАР. 1959. Т. XI. С. 180.
  114. Цетлин А.Л., Никонов Г.К., Шварев И.Ф., Пименов М.Г. К вопросу о противоопухолевой активности природных кумаринов // Раст. Ресурсы. 1965. T. C. P. 507.
  115. De Amicis F., Aquila S., Morelli C., Guido C., Santoro M., Perrotta I., Mauro L., Giordano F., Nigro A., Andò S., Panno M.L. Bergapten drives autophagy through the up-regulation of PTEN expression in breast cancer cells // Mol. Cancer. 2015. V. 14. P. 130. https://doi.org/10.1186/s12943-015-0403-4
  116. Wang X., Cheng K., Han Y., Zhang G., Dong J., Cui Y., Yang Z. Effects of psoralen as an anti-tumor agent in human breast cancer MCF-7/ADR cells // Biol. Pharm. Bull. 2016. V. 39. P. 815. https://doi.org/10.1248/bpb.b15-00957
  117. Bartnik M., Sławińska-Brych A., Żurek A., Kandefer-Szerszeń M., Zdzisińska B. 8-methoxypsoralen reduces AKT phosphorylation, induces intrinsic and extrinsic apoptotic pathways, and suppresses cell growth of SK-N-AS neuroblastoma and SW620 metastatic colon cancer cells // J. Ethnopharmacol. 2017. V. 207. P. 19. https://doi.org/10.1016/j.jep.2017.06.010
  118. Zheng Y.M., Lu A.X., Shen J.Z., Kwok A.H.Y., Ho W.S. Imperatorin exhibits anticancer activities in human colon cancer cells via the caspase cascade // Oncol. Rep. 2016. V. 35. P. 1995. https://doi.org/10.3892/or.2016.4586
  119. Lee Y.M., Wu T.H., Chen S.F., Chung J.G. Effect of 5‑methoxypsoralen (5-MOP) on cell apoptosis and cell cycle in human hepatocellular carcinoma cell line // Toxicol. in Vitro. 2003. V. 17. P. 279. https://doi.org/10.1016/S0887-2333(03)00014-6
  120. Ren Y., Song X., Tan L., Guo C., Wang M., Liu H., Cao Z., Li Y., Peng C. A review of the pharmacological properties of psoralen // Front. Pharmacol. 2020. V. 11. P. 571535. https://doi.org/10.3389/fphar.2020.571535
  121. Liang Y., Xie L., Liu K., Cao Y., Dai X., Wang X., Lu J., Zhang X., Li X. Bergapten: A review of its pharmacology, pharmacokinetics, and toxicity // Phytother. Res. 2021. V. 35. P. 6131. https://doi.org/10.1002/ptr.7221
  122. Wu A., Lu J., Zhong G., Lu L., Qu Y., Zhang C. Xanthotoxin (8-methoxypsoralen): A review of its chemistry, pharmacology, pharmacokinetics, and toxicity // Phytother. Res. 2022. V. 36. P. 3805. https://doi.org/10.1002/ptr.7577
  123. Deng M., Xie L., Zhong L., Liao Y., Liu L., Li X. Imperatorin: A review of its pharmacology, toxicity and pharmacokinetics // Eur. J. Pharmacol. 2020. V. 879. P. 173124. https://doi.org/10.1016/j.ejphar.2020.173124
  124. Tong K., Xin C., Chen W. Isoimperatorin induces apoptosis of the SGC-7901 human gastric cancer cell line via the mitochondria-mediated pathway // Oncol. Lett. 2017. V. 13. P. 518. https://doi.org/10.3892/ol.2016.5387
  125. Mottaghipisheh J. Oxypeucedanin: chemotaxonomy, isolation, and bioactivities // Plants. 2021. V. 10. P. 1577. https://doi.org/10.3390/plants10081577
  126. Mahendra C.K., Tan L.T.H., Lee W.L., Yap W.H., Pusparajah P., Low L.E., Tang S.Y., Chan K.G., Lee L.H., Goh B.H. Angelicin—a furocoumarin compound with vast biological potential // Front. Pharmacol. 2020. V. 11. P. 366. https://doi.org/10.3389/fphar.2020.00366
  127. Nijsten T.E.C., Stern R.S. The increased risk of skin cancer is persistent after discontinuation of psoralen + ultraviolet a: a cohort study // J. Invest. Dermatol. 2003. V. 121. P. 252. https://doi.org/10.1046/j.1523-1747.2003.12350.x
  128. Stern R.S. The risk of squamous cell and basal cell cancer associated with psoralen and ultraviolet A therapy: A 30-year prospective study // J. Am. Acad. Dermatol. 2012. V. 66. P. 553. https://doi.org/10.1016/j.jaad.2011.04.004
  129. Cho Y.H., Kim J.H., Park S.M., Lee B.C., Pyo H.B., Park H.D. New cosmetic agents for skin whitening from Angelica dahurica // J. Cosmet. Sci. 2006. V. 57. P. 11.
  130. Matsuda H., Hirata N., Kawaguchi Y., Yamazaki M., Naruto S., Shibano M., Taniguchi M., Baba K., Kubo M. Melanogenesis stimulation in murine B16 melanoma cells by Umberiferae plant extracts and their coumarin constituents // Biol. Pharm. Bull. 2005. V. 28. P. 1229. https://doi.org/10.1248/bpb.28.1229
  131. Cardoso C.A.L., Vilegas W., Honda N.K. Rapid determination of furanocoumarins in creams and pomades using SPE and GC // J. Pharmaceut. Biomed. 2000. V. 22. P. 203. https://doi.org/10.1016/S0731-7085(99)00255-1
  132. Chu C., Liu C., Yang F., Lian L., Li J., Mao H., Yan J. A dual preconcentration method by combining micro matrix solid-phase dispersion extraction with field-enhanced sample injection and micelle to cyclodextrin stacking for sensitive analysis of neutral coumarins // Electrophoresis. 2021. V. 42. P. 1102. https://doi.org/10.1002/elps.202000273
  133. Masson J., Liberto E., Beolor J.-C., Brevard H., Bicchi C., Rubiolo P. Oxygenated heterocyclic compounds to differentiate Citrus spp. essential oils through metabolomic strategies // Food Chem. 2016. V. 206. P. 223. https://doi.org/10.1016/j.foodchem.2016.03.057
  134. Noh H.S., Jin M.H., Lee S.H. Composition comprising notopterol for improving skin condition. KR patent 2017076469, 2017.
  135. Kim D.K., Lim J.P., Yang J.H., Eom D.O., Eun J.S., Leem K.H. Acetylcholinesterase inhibitors from the roots of Angelica dahurica // Arch. Pharm. Res. 2002. V. 25. P. 856. https://doi.org/10.1007/BF02977004
  136. Karakaya S., Koca M., Sytar O., Duman H. The natural phenolic compounds and their antioxidant and anticholinesterase potential of herb Leiotulus dasyanthus (K. Koch) Pimenov & Ostr. // Nat. Prod. Res. 2019. V. 34. P. 1303. https://doi.org/10.1080/14786419.2018.1557176
  137. Kang S.Y., Kim Y.C. Neuroprotective coumarins from the root of Angelica gigas: Structure-activity relationships // Arch. Pharm. Res. 2007. V. 30. P. 1368. https://doi.org/10.1007/BF02977358
  138. Piao X.L., Yoo H.H., Kim H.Y., Kang T.L., Hwang G.S., Park J.H. Estrogenic activity of furanocoumarins isolated from Angelicae dahuricae // Arch. Pharm. Res. 2006. V. 29. P. 741. https://doi.org/10.1007/BF02974073
  139. Panno M.L., Giordano F., Rizza P., Pellegrino M., Zito D., Giordano C., Mauro L., Catalano S., Aquila S., Sisci D., De Amicis F., Vivacqua A., Fuqua S.W.A., Andò S. Bergapten induces ER depletion in breast cancer cells through SMAD4-mediated ubiquitination // Breast Cancer Res. Treat. 2012. V. 136. P. 443. https://doi.org/10.1007/s10549-012-2282-3
  140. Panno M., Giordano F., Palma M., Bartella V., Rago V., Maggiolini M., Sisci D., Lanzino M., De Amicis F., Ando S. Evidence that bergapten, independently of its photoactivation, enhances p53 gene expression and induces apoptosis in human breast cancer cells // CCDT. 2009. V. 9. P. 469. https://doi.org/10.2174/156800909788486786
  141. Shanmugam H., Dharun V.N., Biswal B.K., Chandran S.V., Vairamani M., Selvamurugan N. Osteogenic stimulatory effect of heraclenin purified from bael in mouse mesenchymal stem cells in vitro // Chem. Biol. Interact. 2019. V. 310. P. 108750. https://doi.org/10.1016/j.cbi.2019.108750
  142. Wei W., Wu X.-W., Deng G.-G., Yang X.-W. Anti-inflammatory coumarins with short- and long-chain hydrophobic groups from roots of Angelica dahurica cv. Hangbaizhi // Phytochemistry. 2016. V. 123. P. 58. https://doi.org/10.1016/j.phytochem.2016.01.006
  143. Lee T.-H., Chen Y.-C., Hwang T.-L., Shu C.-W., Sung P.-J., Lim Y.-P., Kuo W.-L., Chen J.-J. New coumarins and anti-inflammatory constituents from the fruits of Cnidium monnieri // IJMS. 2014. V. 15. P. 9566. https://doi.org/10.3390/ijms15069566
  144. Rim H.-K., Cho W., Sung S.H., Lee K.-T. Nodakenin suppresses lipopolysaccharide-induced inflammatory responses in macrophage cells by inhibiting tumor necrosis factor receptor-associated factor 6 and nuclear factor-κb pathways and protects mice from lethal endotoxin shock // J. Pharmacol. Exp. Ther. 2012. V. 342. P. 654. https://doi.org/10.1124/jpet.112.194613
  145. Jeong H.-J., Na H.-J., Kim S.-J., Rim H.-K., Myung N.-Y., Moon P.-D., Han N.-R., Seo J.-U., Kang T.-H., Kim J.-J., Choi Y., Kang I.-C., Hong S.-H., Kim Y.-A., Seo Y.-W., et al. Anti-inflammatory effect of columbianetin on activated human mast cells // Biol. Pharm. Bull. 2009. V. 32. P. 1027. https://doi.org/10.1248/bpb.32.1027
  146. Lu J., Fang K., Wang S., Xiong L., Zhang C., Liu Z., Guan X., Zheng R., Wang G., Zheng J., Wang F. Anti-inflammatory effect of columbianetin on lipopolysaccharide-stimulated human peripheral blood mononuclear cells // Mediat. Inflamm. 2018. V. 2018. P. 1. https://doi.org/10.1155/2018/9191743
  147. Chen S., Wang Y., Zhang L., Han Y., Liang C., Wang S., Qi L., Pang X., Li J., Chang Y. Therapeutic effects of columbianadin from Angelicae pubescentis radix on the progression of collagen-induced rheumatoid arthritis by regulating inflammation and oxidative stress // J. Ethnopharmacol. 2023. V. 316. P. 116727. https://doi.org/10.1016/j.jep.2023.116727
  148. Souri E., Farsam H., Sarkheil P., Ebadi F. Antioxidant activity of some furanocoumarins Isolated from Heracleum persicum // Pharm. Biol. 2004. V. 42. P. 396. https://doi.org/10.1080/13880200490885077
  149. Karakaya S., Bingol Z., Koca M., Dagoglu S., Pınar N.M., Demirci B., Gulcin İ., Brestic M., Sytar O. Identification of non-alkaloid natural compounds of Angelica purpurascens (Avé-Lall.) Gilli. (Apiaceae) with cholinesterase and carbonic anhydrase inhibition potential // Saudi Pharm. J. 2020. V. 28. P. 1. https://doi.org/10.1016/j.jsps.2019.11.001
  150. Naseri M., Monsef-Esfehani H.R., Saeidnia S., Dastan D., Gohari A.R. Antioxidative coumarins from the roots of Ferulago subvelutina // Asian J. Chem. 2013. V. 25. P. 1875. https://doi.org/10.14233/ajchem.2013.13208
  151. Jalilian F., Moieni-Arya M., Hosseinzadeh L., Shokoohinia Y. Oxypeucedanin and isoimperatorin extracted from Prangos ferulacea (L.) Lindl protect PC12 pheochromocytoma cells from oxidative stress and apoptosis induced by doxorubicin // Res. Pharm. Sci. 2022. V. 17. P. 12. https://doi.org/10.4103/1735-5362.329922
  152. Piao X.L., Park I.H., Baek S.H., Kim H.Y., Park M.K., Park J.H. Antioxidative activity of furanocoumarins isolated from Angelica dahurica // J. Ethnopharmacol. 2004. V. 93. P. 243. https://doi.org/10.1016/j.jep.2004.03.054

补充文件

附件文件
动作
1. JATS XML
2.

下载 (18KB)
3.

下载 (217KB)
4.

下载 (104KB)
5.

下载 (56KB)
6.

下载 (68KB)
7.

下载 (143KB)
8.

下载 (145KB)

版权所有 © В.Ю. Штратникова, 2023

##common.cookie##