Plant Anthocyanins: Structure, Biosynthesis Regulation, Functions, and Ecology
- 作者: Golovko T.K.1
-
隶属关系:
- Institute of Biology, Komi Research Center, Ural Branch, Russian Academy of Sciences
- 期: 卷 70, 编号 7 (2023)
- 页面: 701-714
- 栏目: ОБЗОРЫ
- URL: https://journals.rcsi.science/0015-3303/article/view/233768
- DOI: https://doi.org/10.31857/S0015330323600547
- EDN: https://elibrary.ru/ZFCNFX
- ID: 233768
如何引用文章
详细
The review summarizes current information about anthocyanins (AnC) and their localization in various plant organs and tissues. The pathways and regulation of AnC biosynthesis, the functional significance, and ecological role of these compounds in metabolism and adaptation of plants to environmental conditions are considered. Data on the induction of AnC synthesis under the action of stress factors and during plant growth and development are summarized. Special attention is given to the role of AnC in protection of the photosynthetic apparatus. The prospects for further research and the use of AnC as indicators of plant organism’s state are discussed. The importance of these compounds for humans and human health is mentioned.
作者简介
T. Golovko
Institute of Biology, Komi Research Center, Ural Branch, Russian Academy of Sciences
编辑信件的主要联系方式.
Email: golovko@ib.komisc.ru
Syktyvkar, Russia
参考
- Носов А.М. Вторичный метаболизм // Физиология растений: учебник для студ. вузов. М.: Издательский центр “Академия”. 2007. С. 588.
- Selmar D., Kleinweichter M. Stress enhances the synthesis of secondary plant products: the impact of stress-related over-reduction on the accumulation of natural products // Plant Cell Physiol. 2013. V. 54. P. 817. https://doi.org/10.1093/pcp/pct054
- Salam U., Ullah S., Tang Z.-H., Elateeg A., Khan J., Khan A., Ali S. Plant metabolomics: an overview of the role of primary and secondary metabolites against different environmental stress factors // Life. 2023. V. 13. P. 706. https://doi.org/10.3390/life13030706
- Croteau R., Kutchan T.M., Lewis N.G. Natural products (secondary metabolites) / Biochemistry and molecular biology of plants // Eds. B. Buchanan, W. Gruissem, R. Jones. Rockville, Maryland: Courier Comp., Inc. 2000. P. 1250.
- Panche A.N., Diwan A.D., Chandra S.R. Flavonoids: an overview // J. Nutr. Sci. 2016. V. 5:E47. https://doi.org/10.1017/jns.2016.41
- Карабанов И.А. Флавоноиды в мире растений. Минск: Ураджай, 1981. 80 с.
- Chalker-Scott L. Environmental significance of anthocyanins in plant stress responses // Photochem. Photobiol. 1999. V. 70. P. 1. https://doi.org/10.1111/j.1751-1097.1999.tb01944.x
- Manetas Y. Why some leaves are anthocyanic and why most anthocyanic leaves are red? // Flora. 2006. V. 201. P. 163. https://doi.org/10.1016/j.flora.2005.06.010
- Landi M., Tattini M., Gould K.S. Multiple functional roles of anthocyanins in plant-environment interactions // Environ. Exp. Bot. 2015. V. 119. P. 4. https://doi.org/10.1016/j.envexpbot.2015.05.012
- Gould K.S., Jay-Allemand C., Logan B.A., Baissac Y., Bidel L.P. When are foliar anthocyanins useful to plants? Re-evaluation of the photoprotection hypothesis using Arabidopsis thaliana mutants that differ in anthocyanin accumulation // Environ. Exp. Bot. 2018. V. 154. P. 11. https://doi.org/10.1016/j.envexpbot.2018.02.006
- Agati G., Brunetti C., Fini A., Gori A., Guidi L., Landi M., Sebastiani F., Tattini M. Are flavonoids effective antioxidants in plants? Twenty years of our investigation // Antioxidants. 2020. V. 9. P.1098. https://doi.org/10.3390/antiox9111098
- Lev-Yadun S. The phenomenon of red and yellow autumn leaves: hypotheses, agreements and disagreements // J. Evol. Biol. 2022. V. 35. P. 1245. https://doi.org/10.1111/jeb.14069
- Nurtiana W. Anthocyanin as natural colorant: a review // Food ScienTech J. 2019. V. 1. P. 1. https://doi.org/10.33512/fsj.v1i1.6180
- Fernaґndez-Loґpez J.A., Fernaґndez-Lledo V., Angosto J.M. New insights into red plant pigments: more than just natural colorants // RSC Adv. 2020. V. 10. P. 24669. https://doi.org/10.1039/D0RA03514A
- Grotewold E. The genetics and biochemistry of floral pigments // Annu. Rev. Plant Biol. 2006. V. 57. P. 761. https://doi.org/10.1146/annurev.arplant.57.032905.105248
- Yoshida K., Mori M., Kondo T. Blue flower color development by anthocyanins: from chemical structure to cell physiology // Nat. Prod. Rep. 2009. V. 26. P. 884. https://doi.org/10.1039/B800165K
- Mannino G., Gentile C., Ertani A., Serio G., Bertea C.M. Anthocyanins: biosynthesis, distribution, ecological role, and use of biostimulants to increase their content in plant foods ‒ a review // Agriculture. 2021. V. 11. P. 212. https://doi.org/10.3390/agriculture11030212
- Solovchenko A.E., Merzlyak M.N. Screening of visible and UV radiation as a photoprotective mechanism in plants // Russ. J. Plant. Physiol. 2008. V. 55. P. 719. https://doi.org/10.1134/S1021443708060010
- Garg M., Chawla M., Chunduri V., Kumar R., Sharma S., Sharma N.K., Kaur N., Kumar A., Mundey J.K., Saini M.K., Singh S.P. Transfer of grain colors to elite wheat cultivars and their characterization // J. Cereal Sci. 2016. V. 71. P. 138. https://doi.org/10.1016/j.jcs.2016.08.004
- Khlestkina E.K., Shoeva O.Y., Gordeeva E.I., Otmakhova Y.S., Usenko N.I., Tikhonova M.A., Tenditnik M.V., Amstislavskaya T.G. Anthocyanins in wheat grain: genetic control, health benefit and bread-making quality // Current Challenges in Plant Genetics, Genomics, Bioinformatics, and Biotechnology: Proc. Fifth International Scientific Conference PlantGen2019. Novosibirsk, 2019. https://doi.org/10.18699/ICG-PlantGen2019-02
- Holton T.A., Cornish E.C. Genetics and biochemistry of anthocyanin biosynthesis // Plant Cell. 1995. V. 7. P. 1071. https://doi.org/10.1105/tpc.7.7.1071
- Tanaka Y., Sasaki N., Ohmiya A. Biosynthesis of plant pigments: anthocyanins, betalains and carotenoids // Plant J. 2008. V. 54. P. 733. https://doi.org/10.1111/j.1365-313X.2008.03447.x
- Zhao J. Flavonoid transport mechanisms: how to go, and with whom // Trends Plant Sci. 2015. V. 20. P. 576. https://doi.org/10.1016/j.tplants.2015.06.007
- Gu K.-D., Wang C.-K., Hu D.-G., Hao Y.-J. How do anthocyanins paint our horticultural products? // Sci. Hortic. 2019. V. 249. P. 257. https://doi.org/10.1016/j.scienta.2019.01.034
- Poustka F., Irani N.G., Feller A., Lu Y., Pourcel L., Frame K., Grotewold G. A trafficking pathway for anthocyanins overlaps with the endoplasmic reticulum-to-vacuole protein-sorting route in arabidopsis and contributes to the formation of vacuolar inclusions // Plant Physiol. 2007. V. 145. P. 1323. https://doi.org/10.1104/pp.107.105064
- Quattrocchio F., Verweij W., Kroon A., Spelt C., Mol J., Koes R. PH4 of Petunia is an R2R3 MYB protein that activates vacuolar acidification through interactions with basic-helix-loop-helix transcription factors of the anthocyanin pathway // Plant Cell. 2006. V. 18. P. 1274. https://doi.org/10.1105/tpc.105.034041
- Yin X., Wang T., Zhang M., Zhang Y., Irfan M., Chen L., Zhang L. Role of core structural genes for flavonoid biosynthesis and transcriptional factors in flower color of plants // Biotechnol. Biotechnol. Equip. 2021. V. 35. P. 1214. https://doi.org/10.1080/13102818.2021.1960605
- Pelletier M.K., Murrell J.R., Shirley B.W. Characterization of flavonol synthase and leucoanthocyanidin dioxygenase genes in Arabidopsis (further evidence for differential regulation of “early” and “late” genes) // Plant Physiol. 1997. V. 113. P. 1437. https://doi.org/10.1104/pp.113.4.1437
- Guo N., Han S., Zong M., Wang G., Zheng S., Liu F. Identification and differential expression analysis of anthocyanin biosynthetic genes in leaf color variants of ornamental kale // BMC genom. 2019. V. 20. P. 1. https://doi.org/10.1186/s12864-019-5910-z
- Xu W., Dubos C., Lepiniec L. Transcriptional control of flavonoid biosynthesis by MYB-bHLH-WDR complexes // Trends Plant Sci. 2015. V. 20. P. 176. https://doi.org/10.1016/j.tplants.2014.12.001
- Li J., Han G., Sun C., Sui N. Research advances of MYB transcription factors in plant stress resistance and breeding // Plant Signal. Behav. 2019. V. 14:e1613131 https://doi.org/10.1080/15592324.2019.1613131
- Dubos C., Stracke R., Grotewold E., Weisshaar. B., Martin C., Lepiniec L. MYB transcription factors in Arabidopsis // Trends Plant Sci. 2010. V. 15. P. 573. https://doi.org/10.1016/j.tplants.2010.06.005
- Lin-Wang K.L., Bolitho K., Grafton K., Kortstee A., Karunairetnam S., McGhie T.K., Espley R.V., Hellens R.P., Allan A.C. An R2R3 MYB transcription factor associated with regulation of the anthocyanin biosynthetic pathway in Rosaceae // BMC Plant Biol. 2010. V. 10. P. 50. https://doi.org/10.1186/1471-2229-10-50
- Chen L., Hu B., Qin Y., Hu G., Zhao J. Advance of the negative regulation of anthocyanin biosynthesis by MYB transcription factors // Plant Physiol. Biochem. 2019. V. 136. P. 178. https://doi.org/10.1016/j.plaphy.2019.01.024
- Shi L., Chen X., Wang K., Yang M., Chen W., Yang Z., Cao S. MrMYB6 from Chinese bayberry (Myrica rubra) negatively regulates anthocyanin and proanthocyanidin accumulation // Front. Plant Sci. 2021. V. 12. P. 685654. https://doi.org/10.3389/fpls.2021.685654
- Muhammad N., Uddin N., Khali M., Khan U., Ali N., Ali K., Jones D.A. Diverse role of basic Helix-Loop-Helix (bHLH) transcription factor superfamily genes in the fleshy fruit-bearing plant species // Czech J. Genet. Plant Breed. 2023. V. 59. P. 1. https://doi.org/10.17221/2/2022-CJGPB
- Mishra A.K., Puranik S., Prasad M. Structure and regulatory networks of WD40 protein in plants // J. Plant Biochem. Biotechnol. 2012. V. 21. P. 32. https://doi.org/10.1007/s13562-012-0134-1
- Liu X., Feng C., Zhang M., Yin X., Xu C., Chen K. The MrWD40-gene of Chinese bayberry (Myrica rubra) interacts with MYB and bHLH to enhance anthocyanin accumulation // Plant Mol. Biol. Rep. 2013. V. 31. P. 1474. https://doi.org/10.1007/s11105-013-0621-0
- Strygina K.V., Khlestkina E.K. Structural and functional organization and evolution of the WD40 genes involved in the regulation of flavonoid biosynthesis in the Triticeae tribe // Russ. J. Genet. 2019. V. 55. P. 1398. https://doi.org/10.1134/S1022795419110152
- Liu H., Liu Z., Wu Y., Zheng L., Zhang G. Regulatory mechanisms of anthocyanin biosynthesis in Apple and Pear // Int. J. Mol. Sci. 2021. V. 22. P. 8441. https://doi.org/10.3390/ijms22168441
- Jin S.-W., Rahim M.A., Kim H.-T., Park J.-I., Kang J.-G., Nou I.-S. Molecular analysis of anthocyanin-related genes in ornamental cabbag // Genome. 2018. V. 61. P. 111. https://doi.org/10.1139/gen-2017-0098
- Heng S., Wang L., Yang X., Huang H., Chen G., Cui M., Liu M., Lv Q., Wan Z., Shen J., Fu T. Genetic and comparative transcriptome analysis revealed DEGs involved in the purple leaf formation in Brassica juncea // Front. Genet. 2020. V. 11. P. 322. https://doi.org/10.3389/fgene.2020.00322
- Mazza G., Cacace J.E., Kay C.D. Methods of analysis for anthocyanins in plants and biological fluids // J. AOAC Int. 2004. V. 87. P. 129.
- Lee J., Durst R. W., Wrolstad R. Determination of total monomeric anthocyanin pigment content of fruit juices, beverages, natural colorants, and wines by the pH differential method: collaborative study // J. AOAC Int. 2005. V. 88. P. 1269. https://doi.org/10.1093/jaoac/88.5.1269
- Marpaung A., Tjahjadi K. The analysis of monomeric anthocyanin by pH differential method is not appropriate for certain anthocyanins // Proc. 16th ASEAN Food Conference Outlook and Opportunities of Food Technology and Culinary for Tourism Industry. Sanur-Bali, Indonesia, 2019. https://doi.org/10.5220/0009985400002964
- Truong V.-D., Deighton N., Thompson R.T., McFeeters R.F., Dean L.O., Pecota K.V., Yencho G.C. Characterization of anthocyanins and anthocyanidins in purple-fleshed sweet potatoes by HPLC-DAD/ESI-MS/MS // J. Agric. Food Chem. 2010. V. 58. P. 404. https://doi.org/10.1021/jf902799a
- Saha S., Singh J., Paul A., Sarkar R., Khan Z., Banerjee K. Anthocyanin profiling using UV-vis spectroscopy and liquid chromatography mass spectrometry // J. AOAC Int. 2020. V. 103. P. 23. https://doi.org/10.5740/jaoacint.19-0201
- Merzlyak M., Gitelson A., Chivkunova O., Solovchenko A., Pogosyan S. Application of reflectance spectroscopy for analysis of higher plant pigments // Russ. J. Plant Physiol. 2003. V. 50. P. 704. https://doi.org/10.1023/A:1025608728405
- Gitelson A., Solovchenko A. Non-invasive quantification of foliar pigments: possibilities and limitations of reflectance- and absorbance-based approaches // J. Photochem. Photobiol. B: Biol. 2018. V. 178. P. 537. https://doi.org/10.1016/j.jphotobiol.2017.11.023
- Dymova O.V., Zakhozhiy I.G., Golovko T.K. Age and adaptive changes in the photosynthetic apparatus of leaves in winter green herbaceous plant Ajuga reptans L. in the natural conditions of the taiga zone // Russ. J. Plant Physiol. 2023. V. 70. P. 114.https://doi.org/10.1134/S1021443723601325
- Dooner H.K., Robbins T.P., Jorgensen R.A. Genetic and developmental control of anthocyanin biosynthesis // Annu. Rev. Genet. 1991. V. 25. P. 173. https://doi.org/10.1146/annurev.ge.25.120191.001133
- Li J., Ren L., Gao Z., Jiang M., Liu Y., Zhou L., He J., Chen H. Combined transcriptomic and proteomic analysis constructs a new model for light induced anthocyanin biosynthesis in eggplant (Solanum melongena L.) // Plant Cell Environ. 2017. V. 40. P. 3069. https://doi.org/10.1111/pce.13074
- Song T., Li K., Wu T., Wang Y., Zhang X., Xu X., Yao Y., Han Z. Identification of new regulators through transcriptom analysis that regulate anthocyanin biosynthesis in apple leaves at low temperature // PloS ONE. 2019. V. 14:e0210672. https://doi.org/10.1371/journal.pone.0210672
- Van den Ende W., El-Esawe S.K. Sucrose signaling pathways leading to fructan and anthocyanin accumulation: a dual function in abiotic and biotic stress responses? // Environ. Exp. Bot. 2014. V. 108. P. 4. https://doi.org/10.1016/j.envexpbot.2013.09.017
- Margalha L. Valerio C., Baena-Gonzaґlez E. Plant SnRK1 kinases: structure, regulation, and function // AMP-activated Protein Kinase. 2016. V. 107. P. 403. https://doi.org/10.1007/978-3-319-43589-3_17
- Jezek M., Allan A.C., Jones J.J., Geilfus C.-M. Why do plants blush when they are hungry? // New Phytol. 2023. V. 239. P. 494. https://doi.org/10.1111/nph.18833
- Zhou Z., Zhi T., Liu Y., Chen Y., Ren C. Tyrosine induces anthocyanin biosynthesis in Arabidopsis thaliana // Am. J. Plant Sci. 2014. V. 5. P. 328. https://doi.org/10.4236/ajps.2014.53045
- Zhang N., Qi Y., Zhang H.-J., Wang X., Li H., Shi Y. Guo Y.-D. Genistein: a novel anthocyanin synthesis promoter that directly regulates biosynthetic genes in red cabbage in a light-dependent way // Front. Plant Sci. 2016. V. 7. P. 1804. https://doi.org/10.3389/fpls.2016.01804
- Karageorgou P., Manetas Y. The importance of being red when young: anthocyanins and the protection of young leaves of Quercus coccifera from insect herbivory and excess light // Tree Physiol. 2006. V. 26. P. 613. https://doi.org/10.1093/treephys/26.5.613
- Kariñho-Betancourt E. Plant-herbivore interections and secondary metabolites of plants: ecological and evolutionary perspectives // Bot Sci. 2018. V. 96. P. 35. https://doi.org/10.17129/botsci.1860
- Manetas Y., Drinia A., Petropoulou Y. High contents of anthocyanins in young leaves are correlated to low pools of xanthophyll cycle components and low risk of photoinhibition // Photosynthetica. 2002. V. 40. P. 349. https://doi.org/10.1023/A:1022614722629
- Neill S.O., Gould K.S. Anthocyanins in leaves: light attenuators or antioxidants? // Funct. Plant Biol. 2003. V. 30. P. 865. https://doi.org/10.1071/FP03118
- Drumm-Herrel H., Mohr I. Photostability of seedlings differing in their potential to synthesize anthocyanin // Physiol. Plant. 1985. V. 64. P. 60. https://doi.org/10.1111/j.1399-3054.1985.tb01213.x
- Neill S.O., Gould K.S., Kilmartin P.A., Mitchell K.A., Markham K.R. Antioxidant activities of red versus green leaves in Elatostema rugosum // Plant Cell Environ. 2002. V. 25. P. 539. https://doi.org/10.1046/j.1365-3040.2002.00837.x
- Yu Z.-C., Lin W., Zheng X.-T., Chow W.S., Luo Y.-N., Cai M.-N., Peng C.L. The relationship between anthocyanin accumulation and photoprotection in young leaves of two dominant tree species in subtropical forests in different seasons // Photosynth. Res. 2021. V. 149. P. 41. https://doi.org/10.1007/s11120-020-00781-4
- Hughes N.M., Morley C.B., Smith W.K. The coordination of anthocyanin decline and photosynthetic maturation in developing leaves of three deciduous tree species // New Phytol. 2007. V. 175 P. 675. https://doi.org/10.1111/j.1469-8137.2007.02133.x
- Solovchenko A.E., Chivkunova O.B. Physiological role of anthocyanin accumulation in common hazel juvenile leaves // Russ. J. Plant Physiol. 2011. V. 58. P. 674. https://doi.org/10.1134/S1021443711040157
- Zhu H., Zhang T.-J., Zheng J., Huang X.-D., Yu Z.-C., Peng C.-L., Chow W.S. Anthocyanins function as a light attenuator to compensate for insufficient photoprotection mediated by nonphotochemical quenching in young leaves of Acmena acuminatissima in winter // Photosynthetica. 2018. V. 56. P. 445. https://doi.org/10.1007/s11099-017-0740-1
- Borek M., Baczek-Kwinta R., Rapacz M. Photosynthetic activity of variegated leaves of Coleus x hybridus hort. cultivars characterised by chlorophyll fluorescence techniques // Photosynthetica. 2016. V. 54. P. 331. https://doi.org/10.1007/s11099-016-0225-7
- Trojak M., Skowron E. Role of anthocyanins in high-light stress response // World Sci. News. 2017. V. 81. P. 150.
- Moustaka J., Tanou G., Giannakoula A., Adamakis I.-D.S., Panteris E., Eleftheriou E.P., Moustakas M. Anthocyanin accumulation in poinsettia leaves and its functional role in photo-oxidative stress // Environ. Exp. Bot. 2020. V. 175. P. 104065 https://doi.org/10.1016/j.envexpbot.2020.104065
- Nielsen S.L., Simonsen A.-M. Photosynthesis and photoinhibition in two differently coloured varieties of Oxalis triangularis ‒ the effect of anthocyanin content // Photosynthetica. 2011. V. 49. P. 346. https://doi.org/10.1007/s11099-011-0042-y
- Шелякин М.А., Захожий И.Г., Табаленкова Г.Н., Дымова О.В., Малышев Р.В., Далькэ И.В., Головко Т.К. Содержание антоцианов, активность антиоксидантной и энергодиссипирующих систем в листьях Hylotelephium triphyllum (Haw.) Holub – представителя сем. Толстянковые на Севере // Материалы II Международного симпозиума “Молекулярные аспекты редокс-метаболизма растений” и международной научной школы “Роль активных форм кислорода в жизни растений”. Уфа, 2017. С. 432.
- Merzlyak M.N., Chivkunova O.B., Solovchenko A.E., Naqvi K.R. Light absorption by anthocyanins in juvenile, stressed, and senescing leaves // J. Exp. Bot. 2008. V. 59. P. 3903. https://doi.org/10.1093/jxb/ern230
- Pietrini F., Iannelli M.A., Massacci A. Anthocyanin accumulation in the illuminated surface of maize leaves enhances protection from photo-inhibitory risks at low temperature, without further limitation to photosynthesis // Plant Cell Environ. 2002. V. 25. P. 1251. https://doi.org/10.1046/j.1365-3040.2002.00917.x
- Zhang J., Li S., An H., Zhang X., Zhou B. Integrated transcriptome and metabolome analysis reveals the anthocyanin biosynthesis mechanisms in blueberry (Vaccinium corymbosum L.) leaves under different light qualities // Front. Plant Sci. 2022 V. 13. P. 1073332. https://doi.org/10.3389/fpls.2022.1073332
- Singh P., Singh A., Choudhary K.K. Revisiting the role of phenylpropanoids in plant defense against UV-B stress // Plant Stress. 2023. V. 7. P. 100143. https://doi.org/10.1016/j.stress.2023.100143
- Bi X., Zhang J., Chen C., Zhang D., Li P., Ma F. Anthocyanin contributes more to hydrogen peroxide scavenging than other phenolics in apple peel // Food Chem. 2014. V. 152. P. 205. https://doi.org/10.1016/j.foodchem.2013.11.088
- Захожий И.Г., Малышев Р.В., Дымова О.В., Табаленкова Г.Н., Головко Т.К. Регуляция метаболизма тепличных растений листового салата (Lactuca sativa L.) воздействием УФ радиации // Известия ТСХА. 2017. № 6. С. 42.
- Renner S.S., Zohner C.M. Trees growing in Eastern North America experience higher autumn solar irradiation than their European relatives, but is nitrogen limitation another factor explaining anthocyanin-red autumn leaves? A comment on Peña-Novas and Marchetti 2021 (https://doi.org/10.1111/jeb.13903) // J. Evol. Biol. 2022. V. 35. P. 183.
- Archetti M. Classification of hypotheses for the evolution of autumn colours // Oikos. 2009. V. 118. P. 328. https://doi.org/10.1111/j.1600-0706.2008.17164.x
- Thomas H., Huang L., Young M., Ougham H. Evolution of plant senescence // BMC Evol. Biol. 2009. V. 9. P. 163. https://doi.org/10.1186/1471-2148-9-163
- Lev-Yadun S., Gould K.S. What do red and yellow autumn leaves signal? // Bot. Rev. 2007. V. 73. P. 279.
- Hoch W.A., Zeldin E.L., McGown B.H. Physiological significance of anthocyanins during autumnal leaf senescence // Tree Physiol. 2001. V. 21. P. 1. https://doi.org/10.1093/treephys/21.1.1
- Yin G., Wang Y., Xiao Y., Yang J., Wang R., Jiang Y., Jiang Y. Relationships between leaf color changes, pigment levels, enzyme activity, photosynthetic fluorescence characteristics and chloroplast ultrastructure of Liquidambar formosana Hance // J. For. Res. 2022. V. 33. P. 1559. https://doi.org/10.1007/s11676-021-01441-6
- Hoch W.A., Singsaas E.L., McCown B.H. Resorption protection. Anthocyanins facilitate nutrient recovery in autumn by shielding leaves from potentially damaging light levels // Plant Physiol. 2003. V. 133. P. 1296. https://doi.org/10.1104/pp.103.027631
- George C.O., Hughes N.M., Neufeld H.S. Coevolution and photoprotection as complementary hypotheses for autumn leaf reddening: a nutrient-centered perspective // New Phytol. 2022. V. 233. P. 22. https://doi.org/10.1111/nph.17735
- Mattila H., Tyystjärvi E. Red pigments in autumn leaves of Norway maple do not offer significant photoprotection but coincide with stress symptoms // Tree Physiol. 2023. V. 43. P. 751. https://doi.org/10.1093/treephys/tpad010
- Steyn W.J., Wand S.J.E., Holcroft D.M., Jacobs G. Anthocyanins in vegetative tissues: a proposed unified function in photoprotection // New Phytol. 2002. V. 155. P. 349. https://doi.org/10.1046/j.1469-8137.2002.00482.x
- Akula R., Ravishankar G.A. Influence of abiotic stress signals on secondary metabolites in plants // Plant Signal. Behav. 2011. V. 6. P. 1720. https://doi.org/10.4161/psb.6.11.17613
- Alkhsabah I.A., Alsharafa K.Y., Kalaji H.M. Effects of abiotic factors on internal homeostasis of Mentha spicata leaves // Appl. Ecol. Environ. Res. 2018. V. 16. P. 2537. https://doi.org/10.15666/aeer/1603_25372564
- Mbarki S., Sytar O., Zivcak M., Abdelly C., Cerda A., Brestic M. Anthocyanins of coloured wheat genotypes in specific response to salt stress // Molecules. 2018. V. 23: 1518. https://doi.org/10.3390/molecules23071518
- Чупахина Г.Н., Масленников П.В. Адаптация растений к нефтяному стрессу // Экология. 2004. № 5. С. 330.
- Бузмаков С.А., Хотяновская Ю.В., Андреев Д.Н., Егорова Д.О., Назаров А.В. Индикация состояния экосистем в условиях нефтепромыслового техногенеза // Географический вестник. 2018. Т. 4. С. 90.
- Lila M.A. Anthocyanins and human health: an in vitro investigative approach // J. Biomed. Biotechnol. 2004. V. 5. P. 306. https://doi.org/10.1155/S111072430440401X
- Mazza G.J. Anthocyanins and heart health // Ann. Ist. Super. Sanita. 2007. V. 43. P. 369.
- Pascual-Teresa S., Sanchez-Ballesta M.T. Anthocyanins: from plant to health // Phytochem. Rev. 2008. V. 7. P. 281. https://doi.org/10.1007/s11101-007-9074-0
- Tsuda T. Dietary anthocyanin rich plants: biochemical basis and recent progress in health benefits studies // Mol. Nutr. Food Res. 2012. V. 56. P. 159. https://doi.org/10.1002/mnfr.201100526
- Тараховский Ю.С., Ким Ю.А., Абдрасилов Б.С., Музафаров Е.Н. Флавоноиды: биохимия, биофизика, медицина. Пущино: Sуnchrobook, 2013. 310 с.
- Yudina R.S., Gordeeva E.I., Shoeva O.Yu., Tikhonova M.A., Khlestkina E.K. Anthocyanins as functional food components // Vavilov J. Genetics and Breeding. 2021. V. 25. P. 178. https://doi.org/10.18699/VJ21.022
