«Influence of Excess Zinc on the Activity of Components of the Antioxidant System in Brassica juncea L. (Czern.) and Sinapis alba L. Plants»

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Under the conditions of a growing experiment, the authors studied the effect of zinc at concentra_x0002_tions of 5 (control), 50, 100, and 150 mg/kg substrate on growth, the intensity of lipid peroxidation (LPO), and the activity of the components of the antioxidant system in Brassica juncea L. (Сzern.) variety Slavyanka and Sinapis alba L. cultivar Belgium plants. Some differences and similarities were found in the AOS response of the studied species to an excess of zinc in the root environment. Thus, there were no changes in the inten_x0002_sity of lipid peroxidation in B. juncea under the influence of zinc in high concentrations, despite the high con_x0002_tent of the metal in the roots and shoots. At the same time, even in the presence of metal at a concentration of 50 mg/kg substrate, an increase in the activity of guaiacol peroxidase (GPX) and catalase was observed. In S. alba at high concentrations of zinc in the substrate, the metal content in the shoots was higher than in B. juncea. At the same time, the content of malondialdehyde noticeably increased, despite the increased activity of superoxide dismutase and GPX. In both studied plant species, an increase in the zinc concentra_x0002_tion in the substrate to 50 mg/kg and above led to an increase in the level of proline, while the content of carotenoids decreased. Considering that, in the studied concentrations, the metal had a less strong negative effect on shoot growth in B. juncea compared with S. alba, it was concluded that plants of this species are more resistant to excess zinc in the root environment.

About the authors

I. A. Nilova

Institute of Biology, Federal Research Center Karelian Scientific Center, Russian Academy of Sciences

Email: im-ira@mail.ru
Petrozavodsk, Russia

N. S. Repkina

Institute of Biology, Federal Research Center Karelian Scientific Center, Russian Academy of Sciences

Email: im-ira@mail.ru
Petrozavodsk, Russia

N. M. Kaznina

Institute of Biology, Federal Research Center Karelian Scientific Center

Author for correspondence.
Email: im-ira@mail.ru
Petrozavodsk, Russia

References

  1. Mourato P.M., Moreira I.N., Leitão I., Pinto F.R., Sales J.R., Martins L.L. Effect of heavy metals in plants of the genus Brassica // IJMS. 2015. V. 16. P. 17975. https://doi.org/10.3390/ijms160817975
  2. Zeremski T., Ranđelović D., Jakovljevic K., Jeromela A.M., Milić S. Brassica species in phytoextractions: real potentials and challenges // Plants. 2021. V. 10. P. 2340. https://doi.org/ 10112340https://doi.org/10.3390/plants
  3. Bortoloti G.A., Baron D. Phytoremediation of toxic heavy metals by Brassica plants: A biochemical and physiological approach // Environ. Adv. 2022. V. 8. P. 100204. https://doi.org/10.1016/j.envadv.2022.100204
  4. Małecka A., Konkolewska A., Hanć A., Barałkiewicz L.C., Ratajczak E., Staszak A.M., Kmita H., Jarmuszkiewicz W. Insight into the phytoremediation capability of Brassica juncea (v. Malopolska): metal accumulation and antioxidant enzyme activated // IJMS. 2019. V. 20. P. 4355. https://doi.org/10.3390/ijms20184355
  5. Balafrej H., Bogusz D., Triqui Z.A. Guedira A., Bendaou N., Smouni A., Fahr M. Zinc hyperaccumulation in plants: a review // Plants. 2020. V. 9. P. 562. https://doi.org/10.3390/plants9050562
  6. Xu J., Chai T., Zhang Y., Lang M., Han L. The cation-efflux transporter BjCET2 mediates zinc and cadmium accumulation in Brassica juncea L. leaves // Plant Cell Rep. 2009. V. 28. P. 1235. https://doi.org/10.1007/s00299-009-0723-1
  7. Xu J., Zhang Y.X., Wei W., Han L., Guan Z.Q., Wang Z., Chai T.Y. BjDHNs confer heavy-metal tolerance in plants // Mol. Biotechnol. 2008. V. 38. P. 91. https://doi.org/10.1007/s12033-007-9005-8
  8. Khan M.I.R., Jahan B., Alajmi M.F., Rehman M.T., Khan N.A. Exogenously sourced ethylene modulates defense mechanisms and promotes tolerance to zinc stress in mustard (Brassica juncea L.) // Plants. 2019. V. 8. P. 540. https://doi.org/10.3390/plants8120540
  9. Prasad K.V.S.K., Saradhi P.P., Sharmila P. Concerted action of antioxidant enzymes and curtailed growth under zinc toxicity in Brassica juncea // Environ. Exp. Bot. 1999. V. 42. P. 1.
  10. Feigl G., Kolbert Z., Lehotai N., Molnár Á., Ördög A., Bordé Á., Laskay G., Erdei L. Different zinc sensitivity of Brassica organs is accompanied by distinct responses in protein nitration level and patternet // Ecotoxicol. Environ. Saf. 2016. V. 125. P. 141. https://doi.org/10.1016/j.ecoenv.2015.12.006
  11. Du X., Zeng T., Feng Q., Hu L., Luo X., Weng Q., He J., Zhu B. The complete chloroplast genome sequence of yellow mustard (Sinapis alba L.) and its phylogenetic relationship to other Brassicaceae specie set // Gene. 2020. V. 731. P. 144340. https://doi.org/10.1016/j.gene.2020.144340
  12. Stanis£awska-Glubiak E., Karzeniowska J. Tolerance of white mustard (Sinapsis alba L.) to soil pollution with several heavy metals // Ecol. Chem. Eng. A. 2001. V. 8. P. 445.
  13. Zalewska M., Nogalska A. Phytoextraction potential of sunflower and white mustard plants in zinc-contaminated soil // Chil. J. Agric. Res. 2014. V. 74. P. 485. https://doi.org/10.4067/S0718-58392014000400016
  14. Soleimannejad Z., Sadeghipour H.R., Abdolzadeh A., Golalipour M. Physiological responses of white mustard grown in Zn–contaminated soilset // Acta Physiol. Plant. 2020. V. 42. P. 131. https://doi.org/10.1007/s11738-020-03119-8
  15. Juskulak M., Grobelak A., Grosser A., Vandenbulcke F. Gene expression, DNA damage and other stress markers in Sinapis alba L. exposed to heavy metals with special reference to sewage sludge application on contaminated sites // Ecotoxicol. Environ. Saf. 2019. V. 181. P. 508. https://doi.org/10.1016/j.ecoenv.2019.06.025
  16. Juskulak M., Grobelak A., Vandenbulcke F. Effects of sewage sludge supplementation on heavy metal accumulation and the expression of ABC transporters in Sinapis alba L. during assisted phytoremediation of contaminated sites // Ecotoxicol. Environ. Saf. 2020. V. 197. P. 110606. https://doi.org/10.1016/j.ecoenv.2020.110606
  17. Sharama Sh.S., Dietz K.J. The relationship between metal toxicity and cellular redox imbalance // Trends Plant Sci.2008. V. 14. P. 43. https://doi.org/10.1016/j.tplants.2008.10.007
  18. Wang Ch., Zhang S.H., Wang P.F., Hou J., Zhang W.J., Li W., Lin Zh.P. The effect of excess Zn on mineral nutrition and antioxidative response in rapeseed seedlings // Chemosphere. 2009. V. 75. P. 1468. https://doi.org/10.1016/j.chemosphere.2009.02.033
  19. Yang H., Zhang J., Li J. Physiological response to zinc pollution of rape (Brassica chinensis L.) in paddy soil ecosystem // Adv. Mater. 2011. V. 356. P. 39. https://doi.org/10.4028/www.scientific.net/AMR.356-360.39
  20. Blasco B., Graham N.S., Broadley M.R. Antioxidant response and carboxylate metabolism in Brassica rapa exposed to different external Zn, Ca, and Mg supply // J. Plant Physiol. 2015. V. 176. P. 16. https://doi.org/10.1016/j.jplph.2014.07.029
  21. Du J., Guo Zh., Li R., Ali A., Guo D., Lahori A.H., Wang P., Liu X., Wang X., Zhang Z. Screening of Chinese mustard (Brassica juncea L.) cultivars for the phytoremediation of Cd and Zn based on the plant physiological mechanisms // Environ. Pollut. 2020. V. 216. P. 114213. https://doi.org/10.1016/j.envpol.2020.114213
  22. Stewart R.C., Bewley J.D. Lipid peroxidation associated with accelerated aging of soybean axes // Plant Physiol. 1980. V. 65. P. 245. https://doi.org/10.1104/pp.65.2.245
  23. Beauchamp Ch., Fridovich I. Superoxide dismutase improved assays and an assay applicable to acrylamide gels // Anal. Biochem. 1971. V. 44. P. 276.
  24. Ershova M.A., Nikerova K.M., Galibina N.A., Sofronova I.N., Borodina M.N. Some minor characteristics of spectrophotometric determination of antioxidant system and phenolic metabolism enzyme activity in wood plant tissues of Pinus sylvestris L. // Protein Pept. Lett. 2022. V. 9. P. 711. https://doi.org/10.2174/0929866529666220414104747
  25. Aebi H. Catalase in vitro // Methods in Enzymol. 1984. V. 105. P. 121.
  26. Maehly A.C. The assay of catalase and peroxidase // Meth. Biochem. Anal. 1954. V. 1. P. 357.
  27. Bradford M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding // Anal. Biochem. 1976. V. 72. P. 248.
  28. Bates L.S., Waldren R.P., Teare I.D. Rapid determination of free proline for water-stress studies // Plant Soil. 1973. V. 39. P. 205.
  29. Wintermans J.E.G., De Mots A. Spectrophotometric characteristics of chlorophyll a and b and their phaeophytins in ethanol // Biochim. Biophys. Acta. 1965. V. 109. P. 448. https://doi.org/10.1016/0926-6585(65)90170-6
  30. НСАМ №499-АЭС/МС. Определение элементного состава горных пород, почв, грунтов и донных отложений атомно-эмиссионным c индуктивно связанной плазмой и массспектральным с индуктивно связанной плазмой методами (ред. 2015).
  31. Natasha N., Shanid M., Bibi I., Iqbal J., Khalid S., Murtaza B., Bakhat H.F., Farooq A.B.U., Amjad M., Hammad H.M., Niazi N.Kh., Arshad M. Zinc in soil-plant-human system: A data-analysis review // Sci. Total Environ. 2022. V. 808. P. 152024. https://doi.org/10.1016/j.scitotenv.2021.152024
  32. Alia Prasad K.V.S.K., Saradhi P.P. Effect of zinc on free radicals and proline in Brassica and Cajanus // Phytochem. 1995. V. 39. P. 45. https://doi.org/10.1016/0031-9422(94)00919-K
  33. Mittler R. Oxidative stress, antioxidants and stress tolerance // Trends Plant Sci. 2002. V. 7. P. 405.
  34. Schutzendubel A., Polle A. Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhizatin // J. Exp. Bot. 2002. V. 53. P. 1351.
  35. Dai H., Wei Sh., Skuza L., Jia G. Selenium spiked in soil promoted zinc accumulation of Chinese cabbage and improved its antioxidant system and lipid peroxidation // Ecotoxicol. Environ. Saf. 2019. V. 180. P. 179. https://doi.org/10.1016/j.ecoenv.2019.05.017
  36. Srivastava M., Ma L.Q., Singh N., Singh Sh. Antioxidant responses of hyper-accumulator and sensitive fern species to arsenic // J. Exp. Bot. 2005. V. 56. P. 1335. https://doi.org/10.1093/jxb/eri134
  37. Mohmoud A., Elgawad H.A., Hamed B.A., Beemster G.T.S., El-Shafey N.M. Differences incadmium accumulation, detoxification and antioxidant defenses between contrasting maize cultivars implicate a role of superoxide dismutase in Cd tolerance // Antioxidants. 2021. V. 10. P. 1812. https://doi.org/10.3390/antiox10111812
  38. Ghnaya A.B., Hourmant A., Cerantola S., Kervarec N., Cabon J.Y., Branchard M., Charles G. Influence of zinc on soluble carbohydrate and free amino acid levels in rapeseed plants regenerated in vitro in the presence of zinc // Plant Cell, Tissue Organ Cult. 2010. V. 102. P. 191. https://doi.org/10.1007/s11240-010-9721-9
  39. Lin M.Z., Jin M.F. Soil Cu contamination destroys the photosynthetic systems and hampers the growth of green vegetables // Photosynthetica. 2018. V. 56. P. 1336. https://doi.org/10.1007/s11099-018-0831-7

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (110KB)

Copyright (c) 2023 И.А. Нилова, Н.С. Репкина, Н.М. Казнина

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies