FEATURES OF GROWTH AND INULIN CONTENT IN CALLUS CULTURES Cichorium intybus L. in vitro

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

In vitro callus cultures of common chicory (Cichorium intybus L.) were obtained and their growth and biochemical characteristics depending on the hormonal composition of the MS medium and the spectral composition of light were studied. The study of the effect of light culture on callus tissue formation and inulin accumulation in it was carried out in opaque grow tents with radiation aligned with the flux density of pho- tosynthetic photons and different ratios of its levels in the region of 660 nm (R, red) and 730 nm (FR, far red). The control variant was placed under white linear fluorescent lamps. The resulting cultures were character- ized by high proliferative activity and the capability for morphogenesis. It has been established that the inter- action of two factors—the presence of auxins in the nutrient medium (IAA or NAA at a concentration of 7.5 mg/L in combination with BAP 0.5 mg/L) and cultivation under light culture conditions (FR > R, FR = R, FR < R)—had a significant impact on the biosynthetic potential of cell cultures. In the obtained cultures, a study of the quantitative content of inulin was carried out. It has been shown that the high content of inulin (7.55–7.95%) in callus cultures was on the MS medium in combination with IAA at FR > R illumination. This is probably due to the fact that well proliferating and highly morphogenic callus tissue was formed under these conditions. The obtained results confirm the hypothesis about the specificity of cultured cells to in vitro synthesize and accumulate secondary metabolites in dedifferentiated cells and the dependence of this process on factors of chemical and physical nature. 

About the authors

E. A. Kirakosyana

Russian State Agrarian University - Moscow Timiryazev Agricultural Academy

Email: kalash0407@mail.ru
Moscow, Russia, 127434

R. N. Kirakosyana

Russian State Agrarian University - Moscow Timiryazev Agricultural Academy

Email: kalash0407@mail.ru
Moscow, Russia, 127434

V. I. Trukhacheva

Russian State Agrarian University - Moscow Timiryazev Agricultural Academy

Email: kalash0407@mail.ru
Moscow, Russia, 127434

M. G. Pankovaa

Russian State Agrarian University - Moscow Timiryazev Agricultural Academy

Email: kalash0407@mail.ru
Moscow, Russia, 127434

A. V. Sumina

Russian State Agrarian University - Moscow Timiryazev Agricultural Academy

Author for correspondence.
Email: kalash0407@mail.ru
Moscow, Russia, 127434

References

  1. McClelland J.W., Allen J.C., Zakir S. Bio-medicinal effect of sweet potato in people with diabetes // J. Am. Diet. Assoc. 2007. V. 8. A104. https://doi.org/10.1016/j.jada.2007.05.396
  2. Ikanone C.E.O., Oyekan P.O. Effect of boiling and frying on the total carbohydrate, vitamin C and mineral contents of Irish (Solanun tuberosum) and Sweet (Ipomea batatas) potato tubers // Niger. Food J. 2014. V. 32. P. 33. https://doi.org/10.1016/S0189-7241(15)30115-6
  3. Mohammad K.A. A comprehensive review of sweet potato (Ipomoea batatas Lam): revisiting the associated health benefits // Trends Food Sci. Technol. 2021. V. 115. P. 512. https://doi.org/10.1016/j.tifs.2021.07.001
  4. World Health Organization. WHO traditional medicine strategy: 2014-2023. World Health Organization. 2013.
  5. Tutelyan V.A., Sukhanov B.P., Kochetkova A.A., Sheveleva S.A., Smirnova E.A. Russian regulations on nutraceuticals, functional foods, and foods for special dietary uses // Nutraceutical and functional food regulations in the United States and around the world / Ed. D. Bagchi. Academic Press. 2019. P. 399. https://doi.org/10.1016/B978-0-12-816467-9.00026-5
  6. Roberfroid M. Inulin-type fructans: functional food ingredients // J. Nutr. 2007. V. 137. 2493S-2502S. https://doi.org/10.1201/9780203504932
  7. Barclay T., Ginic-Markovic M., Cooper P., Petrovsky N. Inulin - a versatile polysaccharide with multiple pharmaceutical and food chemical uses // J. Excip. Food Chem. 2016. V. 1. P. 1132.
  8. Kathy R.N. Inulin and oligofructose: what are they? // J. Nutr. 1999. V. 129. 1402S-1406S. https://doi.org/10.1093/jn/129.7.1402S
  9. Kalyani N.K., Kharb S., Thompkinson D.K. Inulin dietary fiber with functional and health attributes − a review // Food Rev. Int. 2010. V. 26. P. 189. https://doi.org/10.1080/87559121003590664
  10. Boeckner L.S., Marilynn I.S., Bryan C.T. Inulin: a review of nutritional and health implications // Adv. Food Nutr. Res. 2001. V. 43. P. 1. https://doi/org/https://doi.org/10.1016/S1043-4526(01)43002-6
  11. Bais H.P., Ravishankar G.A. Cichorium intybus L. cultivation, processing, utility, value addition and biotechnology, with an emphasis on current status and future prospects // J. Sci. Food Agric. 2001. V. 81. P. 467. https://doi.org/10.1002/jsfa.817
  12. Abbas Z.K., Saggu S., Sakeran M.I., Zidan N., Rehman H., Ansari A.A. Phytochemical, antioxidant and mineral composition of hydroalcoholic extract of chicory (Cichorium intybus L.) leaves // Saudi J. Biol. Sci. 2015. V. 22. P. 322. https://doi.org/10.1016/j.sjbs.2014.11.015
  13. Molan A.L., Duncan A.J., Barry T.N., McNabb W.C. Effect of condensed tannins and sesquiterpene lactones extracted from chicory on the motility of larvae of deer lungworm and gastrointestinal nematodes // Parasitol. Int. 2003. V. 52. P. 209. https://doi.org/10.1016/S1383-5769(03)00011-4
  14. Nandagopal S., Ranjitha B.D. Phytochemical and antibacterial studies of chicory (Cichorium intybus L.) – a multipurpose medicinal plant // Adv. Biol. Res. 2007. V. 1. P. 17. https://doi.org/10.1016/S1383-5769(03)00011-4
  15. Muthusamy V.S., Anand S., Sangeetha K.N., Sujatha S., Arun B., Lakshmi B.S. Tannins present in Cichorium intybus enhance glucose uptake and inhibit adipogenesis in 3T3-L1 adipocytes through PTP1B inhibition // Chem.-Biol. Interact. 2008. 174 (1). P. 69. https://doi.org/10.1016/j.cbi.2008.04.016
  16. Atta A.H., Elkoly T.A., Mouneir S.M., Kamel G., Alwabel N.A., Zaher S. Hepatoprotective effect of methanolic extracts of Zingiber officinale and Cichorium intybus // Indian J. Pharm. Sci. 2010. V. 72. P. 564. https://doi.org/10.4103/0250-474X.78521
  17. Meehye K., Shin H.K. The water-soluble extract of chicory reduces glucose uptake from the perfused jejunum in rats // J. Nutr. 1996. V. 126. P. 2236. https://doi.org/10.1093/jn/126.9.2236
  18. Afzal S., Afza N., Awan M.R., Khan T.S., Gilani A., Khanum R., Tariq S. Ethno-botanical studies from Northern Pakistan // J. Ayub. Med. Coll. Abbotabad. 2009. V. 21. P. 52.
  19. Abbasi A.M., Khan M.A., Ahmad M., Zafar M., Khan H., Muhammad N., Sultana S. Medicinal plants used for the treatment of jaundice and hepatitis based on socio-economic documentation // Afr. J. Biotechnol. 2009. V. 8. P. 1643.
  20. Jamshidzadeha A., Khoshnood M.J., Dehghani Z., Niknahad H. Hepatoprotective activity of Cichorium intybus L. leaves extract against carbon tetrachloride induced toxicity // Iran. J. Pharm. Res. 2006. V. 1. P. 41. https://doi.org/10.22037/ijpr.2010.651
  21. Hassan H.A. The prophylactic role of some edible wild plants against nitrosamine precursor’s experimentally-induced testicular toxicity in male albino rats // J. Egypt. Soc. Toxicol. 2008. V. 38. P. 1.
  22. Nayeemunnisa A. Alloxan diabetes-induced oxidative stress and impairment of oxidative defense system in rat brain: neuroprotective effects of Cichorium intybus L. // Int. J. Diabetes Metabol. 2009. V. 17. P. 105. https://doi.org/10.1159/000497681
  23. Mulabagal V., Wang H., Ngouajio M., Nair M.G. Characterization and quantification of health beneficial anthocyanins in leaf chicory (Cichorium intybus) varieties // Eur. Food Res. Technol. 2009. V. 230. P. 47. https://doi.org/10.1007/s00217-009-1144-7
  24. Hassan H.A., Yousef M.I. Ameliorating effect of chicory (Cichorium intybus L.) -supplemented diet against nitrosamine precursors-induced liver injury and oxidative stress in male rats // Food Chem. Toxicol. 2010. V. 48. P. 2163. https://doi.org/10.1016/j.fct.2010.05.023
  25. Taylor R.L. Weeds of Roadsides and Waste Ground in New Zealand. The Caxton Press: Christchurch, New Zealand. 1981. P. 177.
  26. Parsons J.L., Cameron S.I., Harris C.S., Smith M.L. Echinacea biotechnology: advances, commercialization and future considerations // Pharm. Biol. 2018. V. 56. P. 485. https://doi.org/10.1080/13880209.2018.1501583
  27. Toponi M. Action combining kinetin and acid Indole acetic on the neoformation of organs by fragments of leaves of endive (Cichorium intybus L) grown in vitro // C.R. Acad. Sci. Paris. 1963. V. 257. P. 3030.
  28. Park E., Lim H. Establishment of an efficient in vitro plant regeneration system in Chicory (Cichorium intybus L) // Acta Hortic. 1999. V. 483. P. 367. https://doi.org/10.17660/ActaHortic.1999.483.42
  29. Velayutham P., Kumari B.D., Baskaran P. An efficient in vitro plant regeneration system for Cichorium intybus L. – an important medicinal plant // J. Agric. Technol. 2006. V. 2. P. 287.
  30. Rehman R.U., Israr M., Srivastava P.S., Bansal K.C., Abdin M.Z. In vitro regeneration of witloof chicory (Cichorium intybus L.) from leaf explants and accumulation of esculin // In Vitro Cell Dev. Biol. 2003. V. 39. P. 142. https://doi.org/10.1079/IVP2002381
  31. Yucesan B., Turker A.U., Gurel E. TDZ-induced high frequency plant regeneration through multiple shoot formation in witloof chicory (Cichorium intybus L.) // Plant Cell Tissue Organ Cult. 2007. V. 91. P. 243. https://doi.org/10.1007/s11240-007-9290-8
  32. Ohadi Rafsanjani S.M., Alvari A., Mohammad A.Z., Abdin M., A Hejazi M. In vitro propagation of Cichorium intybus L. and quantification of enhanced secondary metabolite (esculin) // Recent Pat. Biotechnol. 2011. V. 5. P. 227. https://doi.org/10.2174/187220811797579123
  33. Dakshayini K., Rao C.V., Karun A., Bhavyashree U., Ujwal P. High-frequency plant regeneration and histological analysis of callus in Cichorium intybus: an important medicinal plant // J. Phytol. 2016. V. 8. P. 7. https://doi.org/10.19071/jp.2016.v8.2980
  34. Wagner G.M., Eneva T. Positive effect of cefotaxime on plant regeneration from Cichorium intybus L. leaf material // Landbauforschung Voelkenrode. 1996. V. 46. P. 166.
  35. Cadalen T., Morchen M., Blassiau C. Development of SSR markers and construction of a consensus genetic map for chicory (Cichorium intybus L). // Mol. Breed. 2010. V. 25. P. 699. https://doi.org/10.1007/s11032-009-9369-5
  36. Shulgina A.A., Kalashnikova E.A., Tarakanov I.G., Kirakosyan R.N., Cherednichenko M.Y., Polivanova O.B., Baranova E.N., Khaliluev M.R. Influence of light conditions and medium composition on morphophysiological characteristics of Stevia rebaudiana Bertoni in vitro and in vivo // Horticulturae. 2021. V. 7. P. 195. https://doi.org/10.3390/horticulturae7070195
  37. Murashige T., Skoog F. A revised medium for rapid growth and bioassays with tobacco tissue cultures // Physiol. Plant. 1962. V. 15. P. 473. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
  38. Касьян И.Г., Касьян А.К. Оптимизация спектрофотометрического способа определения инулина в клубнях топинамбура (Helianthus tuberosus L.) // Седьмая Международная научно-практическая конференция Лекарственное растениеводство: от опыта прошлого к современным технологиям. Кишинев, 2019. С. 121.
  39. Rnjitha Kumari B.D., Velautham P., Anitha S. A comparative study on inulin and esculin content of in vitro and in vivo plants of chicory (Cichorium intybus L. Cv. Lucknow local) // Adv. Biol. Res. 2007. V. 1. P. 22.
  40. Velayutham P., Ranjitha Kumari B.D. Influence of photoperiod on in vitro flowering in Cichorium intybus L. // Indian J. Plant Physiol. 2003. V. 218. P. 90.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (265KB)
3.

Download (832KB)
4.

Download (1MB)
5.

Download (2MB)
6.

Download (70KB)

Copyright (c) 2023 Е.А. Калашникова, Р.Н. Киракосян, В.И. Трухачев, М.Г. Панкова, А.В. Сумин

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies