Lighting intensity affects the fatty acid composition of total lipids of basil leaves and roots (Ocimum basilicum L.)

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The vegetative organs of common basil (Ocimum basilicum L.) grown in water culture at different levels of illumination (50, 100, and 150 μmol PAR quanta/(m2 s)) for 21 days were studied. In the work, the Purple Velvet basil variety, which is popular in agriculture and has intensely colored leaves was used. The biomass, water content, and composition of fatty acids (FA) of total lipids in the leaves and roots of plants and the content of malondialdehyde and chlorophylls (a, b) in the aerial parts of plants were determined. The sensitivity of the FA composition and morphophysiological parameters (biomass and chlorophyll content in leaves) of O. basilicum plants to the intensity of illumination was shown. The greatest effect was caused by the illumination intensity mode of 150 μmol/(m2 s). Species composition of O. basilicum FA under all lighting conditions was wider in root lipids; however, more pronounced changes in the qualitative composition of Fas were observed in leaves. Photodependent regulation of FA component composition of O. basilicum manifested itself in an increase in the proportion of unsaturated FAs, especially polyene ones, which led to an increase in the unsaturation index (UI) of esterified lipid FAs. The highest UI values were obtained with illumination of 150 μmol/(m2 s). At the same time, with an increase in the illumination intensity, a significant increase in the activity of ω-3 and ω-9-desaturases occurred, which indicates in favor of their lightdependent activation. Thus, increasing the intensity of lighting to certain values directly proportionally affects the physiological parameters of O. basilicum. The maximum indicators of productive growth and the implementation of adaptive mechanisms of green and underground parts of basil plants correspond to illumination of 150 μmol/(m2 s).

About the authors

T. V. Ivanova

Timiryazev Institute of Plant Physiology, Russian Academy of Sciences

Email: fizrast@mail.ru
Moscow, Russia

A. S. Voronkov

Timiryazev Institute of Plant Physiology, Russian Academy of Sciences

Author for correspondence.
Email: fizrast@mail.ru
Moscow, Russia

References

  1. De Keyser E., Dhooghe E., Christiaens A., Van Labeke M.-C., Huylenbroeck J.V. LED light quality intensifies leaf pigmentation in ornamental pot plants // Sci. Hortic. 2019. V. 253. P. 270. https://doi.org/10.1016/j.scienta.2019.04.006
  2. Pashkovskiy P., Vereshchagin M., Kreslavski V., Ivanov Y., Kumachova T., Ryabchenko A., Voronkov A., Kosobryukhov A., Kuznetsov V., Allakhverdiev S.I. Effect of phytochrome deficiency on photosynthesis, light-related genes expression and flavonoid accumulation in Solanum lycopersicum under red and blue light // Cells. 2022. V. 11. P. 3437. https://doi.org/10.3390/cells11213437
  3. Lobiuc A., Vasilache V., Oroian M., Stoleru T., Burducea M., Pintilie O., Zamfirache M.M. Blue and red LED illumination improves growth and bioactive compounds contents in acyanic and cyanic Ocimum basilicum L. microgreens // Molecules. 2017. V 22. P. 2111. https://doi.org/10.3390/molecules22122111
  4. Kreslavski V.D., Los D.A., Schmitt F.J., Zharmukhamedov S.K., Kuznetsov V.V., Allakhverdiev S.I. Theimpact of the phytochromes on photosynthetic processes // BBA-Bioenerg.2018. V. 1859. P. 400. https://doi.org/10.1016/j.bbabio.2018.03.003
  5. Stetsenko L.A., Pashkovsky P.P., Voloshin R.A., Kreslavski V.D., Kuznetsov Vl.V., Allakhverdiev S.I. Role of anthocyanin and carotenoids in the adaptation of the photosynthetic apparatus of purple- and green-leaved cultivars of sweet basil (Ocimum basilicum) to high-intensity light // Photosynthetic. 2020. V. 58. P. 890. https://doi.org/10.32615/ps.2020.048
  6. Voronkov A.S., Ivanova T.V., Kumachova T.K., Kozhevnikova A.D., Tsydendambaev V.D. Polyunsaturated and very-long-chain fatty acids are involved in the adaptation of maloideae (Rosaceae) to combined stress in the mountains // Chem. Biodivers. 2020. V 17. e1900588. https://doi.org/10.1002/cbdv.201900588
  7. Fernandes F., Pereira E., Círić A., Soković M., Calhelha R.C., Barros L., Ferreira I.C. Ocimum basilicum var. purpurascens leaves (red rubin basil): a source of bioactive compounds and natural pigments for the food industry // Food Funct. 2019. V. 10. P. 3161. https://doi.org/10.1039/C9FO00578A
  8. Idris A.A., Nour A.H., Ali M.M., Erwa I.Y., Ishag O.A.O., Nour A.H. Physicochemical properties and fatty acid composition of Ocimum basilicum L. seed oil // AJPCS. 2020. V.8. P 1. https://doi.org/10.9734/ajopacs/2020/v8i130104
  9. Mostafavi S., Asadi-Gharneh H.A., Miransari M. The phytochemical variability of fatty acids in basil seeds (Ocimum basilicum L.) affected by genotype and geographical differences // Food Chem. 2019. V. 276. P. 700. https://doi.org/10.1016/j.foodchem.2018.10.027
  10. Hoagland D.R., Arnon D.I. The water-culture method for growing plants without soil. // Soil Sci. 1950. V. 48. P. 4.
  11. Lichtenthaler H.K. Chlorophylls and carotenoids: pigment of photosynthetic biomembranes // Method. Enzymol.1987. V. 148. P. 350.
  12. Heath R.L., Packer L. Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation // Arch. Biochem. Biophys. 1968. V. 125. P. 189.
  13. Voronkov A.S., Ivanova T.V., Kumachova T.K. The features of the fatty acid composition of Pyrus L. total lipids are determined by mountain ecosystem conditions // Plant Physiol. Bioch. 2022. V. 170. P. 350. https://doi.org/10.1016/j.plaphy.2021.12.021
  14. Ivanova T.V., Voronkov A.S., Kumachova T.KH., Tsydendambaev V.D. Distinguishing features of fatty acid content and composition in total lipids of Malus orientalis Uglitzk. pericarp // Russ. J. Plant Physiol. 2020. V. 67. P. 463. https://doi.org/10.1134/S1021443720030127
  15. Voronkov A., Ivanova T. Significance of lipid fatty acid composition for resistance to winter conditions in Asplenium scolopendrium // Biology. 2022. V. 11. P. 507. https://doi.org/10.3390/biology11040507
  16. Voronkov A.S., Ivanova T.V., Kuznetsova E.I., Kumachova T.Kh. Adaptations of Malus domestica Borkh. (Rosaceae) fruits grown at different altitudes // Russ. J. Plant Physiol. 2019. V. 66. P. 922. https://doi.org/10.1134/S1021443719060153
  17. Xin P., Li B., Zhang H., Hu J. Optimization and control of the light environment for greenhouse crop production //Scientific Rep. 2019 V. 9. P. 8650. https://doi.org/10.1038/s41598-019-44980-z
  18. Allakhverdiev S.I., Kreslavski V.D., Klimov V.V., Los D.A., Carpentier R., Moharty P. Heat stress: an overview of molecular responses in photosynthesis // Photosynth. Res. 2008. V. 98. P. 541. https://doi.org/10.1007/s11120-008-9331-0
  19. Mareri L., Parrotta L., Cai G. Environmental Stress and Plants // Int. J. Mol. Sci. 2022. V. 23. P. 5416. https://doi.org/10.3390/ijms23105416
  20. Galväo V., Fankhauser C. Sensing the light environment in plants: photoreceptors and early signiling steps // Curr. Opin. Neurobiol. 2015. P. 46. https://doi.org/10.1016/j.conb.2015.01.013
  21. Carvalho S.D., Schwieterman M.L., Abrahan C.E., Colquhoun T.A., Folta K.M. Light quality dependent changes in morphology, antioxidant capacity, and volatile production in sweet basil (Ocimum basilicum) // Front. Plant Sci. 2016. V.7. P. 1328. https://doi.org/10.3389/j.fpls.2016.01328
  22. Зотов В.С., Болычевцева Ю.В., Хапчаева С.А., Терехова И.В., Шубин В.В., Юрина Н.П., Кульчин Ю.Н. Влияние спектрального состава освещения на выход биомассы, флюоресценцию хлорофилла фотосистемы 2 и общее содержание эфирных масел у Ocimum basilicum // Прикладная биохимия и микробиология. 2020. Т. 56. С. 283.https://doi.org/10.31857/S0555109920030174
  23. Kosobryukhov A.A., Kreslavski V.D., Khramov R.N., Brakkova L.R., Shchelokov R.N. Effect of additional low intensity luminescence radiation 625 nm on plant growth and photosynthesis // Biotronics. 2000. V. 29. P. 23.
  24. Feng L., Raza M.A., Li Z., Chen Y., Khalid M.H.B., Du J., Liu W., Wu X., Song C., Yu L., Zhang Z., Yuan S., Yang W., Yang F. The influence of light intensity and leaf movement on photosynthesis characteristics and carbon balance of soybean // Front. Plant Sci. 2019. V. 9. P. 1952. https://doi.org/10.3389/fpls.2018.01952
  25. Турманидзе Н.М., Долидзе К.Г. Pезультаты изучения динамики содержания пластидных пигментов в листьях чайного растения // Фундаментальные исследования. 2014. Т. 9. С. 2009.
  26. Liang X., Qian R., Wang D., Liu L., Sun C., Lin X. Lipid-derived aldehydes: new key mediators of plant growth and stress responses // Biology. 2022. V. 11. P. 1590. https://doi.org/10.3390/biology11111590
  27. Kurganova L.N., Veselov A.P., Goncharova T.A., Sinitsyna Yu.V. Lipid peroxidation and antioxidant systems of protection against heat shock in pea (Pisum sativum L.) chloroplasts // Russ. J. Plant Physiol. 1997. V. 44. P. 630.
  28. Angers P., Morales M.R., Simou J.E. Fatty acid variation in seed oil among Ocimum species // JAOCS. 1996. V. 73. P. 393.
  29. Malik M.S., Sattar A., Khan S.A. The fatty acids of indigenous resources from possible industrial applications. part xvii: the fatty acid composition of the fixed seed oils of Ocimum basilicum and Ocimum album seeds // Pakistan J. Sci. Ind. Res. 1989. V.32. P. 207.
  30. Тарчевский И.А. Метаболизм растений при стрессе. Казань: Фэн. 2001. 448 с.
  31. Los D., Murata N. Structure and expression of fatty acid dessaturases // Biochem. Biophys. Acta. 1998. V. 1394. P. 3.
  32. Лось Д.А. Десатуразы жирных кислот. М.: Научный мир, 2014. 373 с.
  33. Farkas T. Adaptation of fatty acid composition to temperature – a study on carp (Cyprinu scarpio L.) livir slices // Comp. Biochem. Physiol. 1984. V. 79. P. 531.
  34. Millar A.A., Smith M.A., Kunst L. All fatty acid and not equal: discrimination in plant membrane lipids // Trends Plant Sci. Rev. 2000. V. 5. P. 95. https://doi.org/10.1016/s1360-1385(00)01566-1
  35. Ntambi J.M. Regulation of stearoyl-CoA desaturase by polyunsaturated fatty acid and cholesterol // J. Lipid Res. 1999. V. 40. P. 1549.
  36. Paz Ramos A., Lague P., Lamoureux G., Lafleur M. Effect of saturated very long-chain fatty acids on the organization of lipid membranes: a study combining 2H NMR spectroscopy and molecular dynamics simulations // J. Phys. Chem. B. 2016. V. 120. P. 6951. https://doi.org/10.1021/acs.jpcb.6b04958
  37. Bach L., Gissot L., Marion J., Tellier F., Moreau P., Satiat-Jeunemaitre B., Palauqui J.-C., Napier J.A., Faure J.-D. Very-long-chain fatty acids are required for cell plate formation during cytokinesis in Arabidopsis thaliana // J. Cell Sci. 2011. V. 124. P. 3223. https://doi.org/10.1242/jcs.074575
  38. Nobusawa T., Okushima Y., Nagata N., Kojima M., Sakakibara H., Umeda M. Synthesis of very-long-chain fatty acids in the epidermis controls plant organ growth by restricting cell proliferation // PLoS Biol. 2013. V. 11. e1001531. https://doi.org/10.1371/journal.pbio.1001531
  39. Roudier F., Gissot L., Beaudoin F., Haslam R., Michaelson L., Marion J., Molino D., Lima A., Bach L., Morin H., Tellier F., Palauqui J.-C., Bellec Y., Renne C. et al. Very-long-chain fatty acids are involved in polar auxin transport and developmental patterning in Arabidopsis // Plant Cell. 2010. V. 22. P. 364. https://doi.org/10.1105/tpc.109.071209
  40. Tarchoune I., Baatour O., Harrathi J., Hamdaoui G., Lachaa M., Ouerghi Z., Marzouk B. Effect of two sodium salts on fatty asid and essential oil composition of basil (Ocium basilicum L.) // Acta Physiol. Plant. 2013. V. 35. P. 2365. https://doi.org/10.1007/s11738-013-1271-4

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (178KB)
3.

Download (299KB)
4.

Download (144KB)

Copyright (c) 2023 Т.В. Иванова, А.С. Воронков

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies