Isolation of CP-PVY-Specific siRNA from PVY-Infected Plants of Solanum tuberosum

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Tools for activating crop resistance to viruses are now becoming part of a comprehensive plant protection

strategy. Artificial resistance to viruses through expression of the viral envelope protein in transgenic

plants is fairly well understood. An urgent issue is the study of small RNAs involved in the protective mechanisms

of RNA interference against viruses. Understanding the role of short interfering RNA (siRNA) in the

regulation and shutdown of genes is important. The proteinase accessory component (HC-Pro), a multifunctional

suppressor protein synthesized by the potato virus Y, is able to neutralize S. tuberosum plant defenses

by trapping siRNA and removing them from the RNA interference process, thereby causing systemic infection

of the host plant. Protein liquid chromatography combined with high performance sequencing can help

recognize the large number of small RNAs resulting from viral RNA degradation and identify 21–23 bp.

siRNA from PVY-infected S. tuberosum plants. The HC-Pro/siRNA nucleoprotein complex was detected in

chromatographic fractions using antibodies against HC-Pro, Southern-blot indicated the presence of small

RNAs in the complex, and analysis of data from deep sequencing of the small RNA population determined a

specificity of 21–23 bp. siRNA to the envelope protein of the PVY virus. The research results can be applied

in the study of intracellular signaling molecules and stimulate new research on antiviral mechanisms to

develop effective strategies for plant protection against viruses.

About the authors

M. Yu. Sutula

Non-commercial joint stock company “East Kazakhstan University named after Sarsen Amanzholov”

Email: max.sutula@gmail.com
Ust-Kamenogorsk, Kazakhstan

Zh. K. Kabataeva

Non-commercial joint stock company “East Kazakhstan University named after Sarsen Amanzholov”

Email: max.sutula@gmail.com
Ust-Kamenogorsk, Kazakhstan

G. K. Komekova

Non-commercial joint stock company “East Kazakhstan University named after Sarsen Amanzholov”

Email: max.sutula@gmail.com
Ust-Kamenogorsk, Kazakhstan

T. S. Khosnutdinova

Non-commercial joint stock company “East Kazakhstan University named after Sarsen Amanzholov”

Email: max.sutula@gmail.com
Ust-Kamenogorsk, Kazakhstan

E. A. Zhakmanova

Non-commercial joint stock company “East Kazakhstan University named after Sarsen Amanzholov”

Author for correspondence.
Email: max.sutula@gmail.com
Ust-Kamenogorsk, Kazakhstan

References

  1. Loebenstein G., Manadilova A. Virus and virus-like diseases of major crops in developing countries // Springer, Dordrecht, Netherlands. 2003. P. 195. https://doi.org/10.1007/978-94-007-0791-7_8
  2. Chikh-Ali M., Tran L.T., Price W.J., Karasev A.V. Effects of the age-related resistance to potato virus Y in potato on the systemic spread of the virus, incidence of the potato tuber necrotic ringspot disease, tuber yield, and translocation rates into progeny tubers // Plant Disease. 2020. V. 104. P. 269. https://doi.org/10.1094/PDIS-06-19-1201-RE
  3. Ghildiyal M., Zamore P.D. Small silencing RNAs: an expanding universe // Nat. Rev. Genet. 2009. V. 10. P. 94. https://doi.org/10.1038/nrg2504
  4. Bushra T., Idrees A.N., Usman A., Tayyab H. How RNA interference combat viruses in plants // Functional Genomics. 2012. V. 6. P. 113. https://doi.org/10.5772/51870
  5. Carthew R.W., Sontheimer E.J. Origins and mechanisms of miRNAs and siRNAs // Cell. 2009. V. 136. P. 642. https://doi.org/10.1016/j.cell.2009.01.035
  6. Dunoyer P., Himber C., Voinnet O. DICER-LIKE 4 is required for RNA interference and produces the 21-nucleotide small interfering RNA component of the plant cell-to-cell silencing signal // Nat. Genet. 2005. V. 37. P. 1356. https://doi.org/10.1038/ng1675
  7. Omarov R., Sparks K., Smith L., Zindovic J., Scholthof H.B. Biological relevance of a stable biochemical interaction between the tombusvirus-encoded P19 and short interfering RNAs // J. Virol. 2006. V. 80. P. 3000. https://doi.org/10.1128/JVI.80.6.3000-3008.2006
  8. Li F., Ding S. Virus counterdefense: diverse strategies for evading the RNA-silencing immunity // Annu. Rev. Microbiol. 2006. V. 60. P. 503. https://doi.org/10.1146/annurev.micro.60.080805.142205
  9. Sutula M.Y., Akbassova A.Z., Yergaliev T.M., Nurbekova Zh.A., Mukiyanova G.S., Omarov R.T. Endowing plants with tolerance to virus infection by their preliminary treatment with short interfering RNAs // Russ. J. Plant Physiol. 2017. V. 64. P. 939. https://doi.org/10.1134/S1021443717060103
  10. Valli A.A., Gallo A., Rodamilans B., Lopez-Moya J.J., García J.A. The HCPro from the Potyviridae family: an enviable multitasking Helper Component that every virus would like to have // Molecular plant pathology. 2018. V. 19. P. 744. https://doi.org/10.1111/mpp.12553
  11. Shiboleth Y.M., Haronsky E., Leibman D., Arazi T., Wassenegger M., Whitham S.A., Gaba V., Gal-On A. The conserved FRNK box in HC-Pro, a plant viral suppressor of gene silencing, is required for small RNA binding and mediates symptom development // J. Virol. 2007. V. 81. P. 13135. https://doi.org/10.1128/JVI.01031-07
  12. Rawlings R.A., Krishnan V., Walter N.G. Viral RNAi suppressor reversibly binds siRNA to outcompete Dicer and RISC via multiple turnover // J. Mol. Biol. 2011. V. 408. P. 262. https://doi.org/10.1016/j.jmb.2011.02.038
  13. Murashige T., Skoog F. A revised medium for rapid growth and bioassays with tobacco tissue cultures // Physiol Plant. 1962. V. 15. P. 473. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
  14. Coskun O. Separation techniques: Chromatography // North Clin Istanb. 2016. V. 3. P. 156. https://doi.org/10.14744/nci.2016.32757
  15. Toni L.S., Garcia A.M., Jeffrey D.A., Jiang X., Stauffer B.L., Miyamoto Sh.D., Sucharov C.C. Optimization of phenol-chloroform RNA extraction // MethodsX. 2018. V. 5. P. 599. https://doi.org/10.1016/j.mex.2018.05.011
  16. Plisson C., Drucker M., Blanc S., German-Retana S., Le Gall O., Thomas D., Bron P. Structural characterisation of HC-Pro, a plant virus multifunctional protein // J. Biol. Chem. 2003. V. 278. P. 23753. https://doi.org/10.1074/jbc
  17. McCue K.F., Ponciano G., Rockhold D.R., Whitworth J.L., Gray S.M., Fofanov Yu., Belknap W.R. Generation of PVY Coat Protein siRNAs in Transgenic Potatoes Resistant to PVY // American J. Potato Res. 2012. V. 89. https://doi.org/10.1007/s12230-012-9257-0
  18. Del Toro F.J., Donaire L., Aguilar E., Chung B.N., Tenllado F., Canto T. Potato virus Y HCPro suppression of antiviral silencing in Nicotiana benthamiana plants correlates with its ability to bind in vivo to 21- and 22-nucleotide small RNAs of viral sequence. J. Virol. 2017. V. 91. https://doi.org/10.1128/JVI.00367-17

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (201KB)

Copyright (c) 2023 М.Ю. Сутула, Ж.К. Кабатаева, Г.К. Комекова, Т.С. Хоснутдинова, Е.А. Жакманова

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies