Effect of Expression of the NDB2 Heterologous Gene of Arabidopsis thaliana on Growth and Respiratory Activity of Nicotiana tabacum

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Novel lines of tobacco (Nicotiana tabacum L.), highly expressing the AtNDB2 gene (NDB2 from Arabidopsis thaliana (L.) Heynh.), were produced with the help of agrobacterial transformation followed by a selection. The transgenic 13s line, possessing typical exterior and the AtNDB2 expression level, was compared with the initial wild type of N. tabacum regarding the parameters of growth and respiratory activity under optimal and suboptimal temperatures. It was found that the total and alternative respiration increased and the superoxide anion generation decreased in the 13s plants under the suboptimal temperature. The growth rate was decreased in the plants highly expressing the AtNDB2 gene in comparison with the control wild type plants, especially at the temperature below the optimum. Possible causes of the found changes are discussed.

About the authors

N. E. Korotaeva

Siberian Institute of Plant Physiology and Biochemistry, Siberian Branch, Russian Academy of Sciences

Email: knev73@yandex.ru
Irkutsk, 664033 Russia

A. M. Shigarova

Siberian Institute of Plant Physiology and Biochemistry, Siberian Branch, Russian Academy of Sciences

Email: knev73@yandex.ru
Irkutsk, 664033 Russia

A. I. Katyshev

Siberian Institute of Plant Physiology and Biochemistry, Siberian Branch, Russian Academy of Sciences

Email: knev73@yandex.ru
Irkutsk, 664033 Russia

I. V. Fedoseeva

Siberian Institute of Plant Physiology and Biochemistry, Siberian Branch, Russian Academy of Sciences

Email: knev73@yandex.ru
Irkutsk, 664033 Russia

A. V. Fedyaeva

Siberian Institute of Plant Physiology and Biochemistry, Siberian Branch, Russian Academy of Sciences; Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences

Email: knev73@yandex.ru
Irkutsk, 664033 Russia; Novosibirsk, 630090 Russia

D. V. Sauchyn

Institute of Genetics and Cytology, National Academy of Sciences of Belarus

Email: knev73@yandex.ru
Minsk, 220072 Belarus

A. M. Shyshlova-Sokolovskaya

Institute of Genetics and Cytology, National Academy of Sciences of Belarus

Email: knev73@yandex.ru
Minsk, 220072 Belarus

O. Yu. Urbanovich

Institute of Genetics and Cytology, National Academy of Sciences of Belarus

Email: knev73@yandex.ru
Minsk, 220072 Belarus

G. B. Borovskii

Федеральное государственное бюджетное научное учреждение Сибирский институт физиологии и биохимии растений Сибирского отделения Российской академии наук

Author for correspondence.
Email: knev73@yandex.ru
Россия, Иркутск

References

  1. Mittler R. Oxidative stress, antioxidants and stress tolerance // Trends Plant Sci. 2002. V. 7. P. 405. https://doi.org/10.1016/S1360-1385(02)02312-9
  2. Gill S.S., Tuteja N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants // Plant Physiol. Biochem. 2010. V. 48. P. 909. https://doi.org/10.1016/j.plaphy.2010.08.016
  3. Nadarajah K.K. ROS homeostasis in abiotic stress tolerance in plants // Int. J. Mol. Sci. 2020. V. 21. № 15. P. 5208. https://doi.org/10.3390/ijms21155208
  4. Suzuki N., Miller G., Morales J., Shulaev V., Torres M.A., Mittler R. Respiratory burst oxidases: the engines of ROS signaling // Curr. Opin. Plant Biol. 2011. V. 14. № 6. P. 691. https://doi.org/10.1016/j.pbi.2011.07.014
  5. Hu C.-H., Wang P.-Q., Zhang P.-P., Nie X.-M., Li B.-B., Tai L., Liu W.-T., Li W.-Q., Chen K.-M. NADPH oxidases: the vital performers and center hubs during plant growth and signaling // Cells. 2020. V. 9. № 2. P. 437. https://doi.org/10.3390/cells9020437
  6. Navrot N., Rouhier N., Gelhaye E., Jacquot J. Reactive oxygen species generation and antioxidant systems in plant mitochondria // Physiol. Plant. 2007. V. 129. № 1. P. 185. https://doi.org/10.1111/j.1399-3054.2006.00777.x
  7. Kristiansen K.A., Jensen P.E., Møller I.M., Schulz A. Monitoring reactive oxygen species formation and localisation in living cells by use of the fluorescent probe CM-H2DCFDA and confocal laser microscopy // Physiol. Plant. 2009. V. 136. № 4. P. 369. https://doi.org/10.1111/j.1399-3054.2009.01243.x
  8. Bartoli C.G., Gómez F., Martínez D.E., Guiamet J.J. Mitochondria are the main target for oxidative damage in leaves of wheat (Triticum aestivum L.) // J. Exp. Bot. 2004. V. 55. № 403. P. 1663. https://doi.org/10.1093/jxb/erh199
  9. Amirsadeghi S., Robson C.A., Vanlerberghe G.C. The role of the mitochondrion in plant responses to biotic stress // Physiol. Plant. 2007. V. 129. № 1. P. 253. https://doi.org/10.1111/j.1399-3054.2006.00775.x
  10. Suzuki N., Miller G., Morales J., Shulaev V., Torres M.A., Mittler R. ROS and redox signalling in the response of plants to abiotic stress // Plant Cell Environ. 2012. V. 35. № 2. P. 259. https://doi.org/10.1016/j.pbi.2011.07.014
  11. Blokhina O., Fagerstedt K.V. Oxidative metabolism, ROS and NO under oxygen deprivation // Plant Physiol. Biochem. 2010. V. 48. № 5. P. 359. https://doi.org/10.1016/j.plaphy.2010.01.007
  12. Michalecka A.M., Svensson A.S., Johansson F.I., Agius S.C., Johanson U., Brennicke A., Binder S., Rasmusson A.G. Arabidopsis genes encoding mitochondrial type II NAD(P)H dehydrogenases have different evolutionary origin and show distinct responses to light // Plant Physiol. 2003. V. 133. № 2. P. 642. https://doi.org/10.1104/pp.103.024208
  13. Elhafez D., Murcha M.W., Clifton R., Soole K.L., Day D.A., Whelan J. Characterization of mitochondrial alternative NAD(P)H dehydrogenases in Arabidopsis: intraorganelle location and expression // Plant Cell Physiol. 2006. V. 47. № 1. P. 43. https://doi.org/10.1093/pcp/pci221
  14. Sweetman C., Waterman C.D., Rainbird B.M., Smith P.M.C., Jenkins C.D., Day D.A., Soole K.L. AtNDB2 is the main external NADH dehydrogenase in mitochondria and is important for tolerance to environmental stress // Plant Physiol. 2019. V. 181. №. 2. P. 774. https://doi.org/10.1104/pp.19.00877
  15. Stupnikova I., Benamar A., Tolleter D., Grelet J., Borovskii G., Dorne A.J., Macherel D. Pea seed mitochondria are endowed with a remarkable tolerance to extreme physiological temperatures // Plant Physiol. 2006. V. 140. № 1. P. 326. https://doi.org/10.1104/pp.105.073015
  16. Fedoseeva I.V., Pyatrikas D.V., Stepanov A.V., Fedyaeva A.V., Varakina N.N., Rusaleva T.M., Borovskii G.B., Rikhvanov E.G. The role of flavin-containing enzymes in mitochondrial membrane hyperpolarization and ROS production in respiring Saccharomyces cerevisiae cells under heat-shock conditions // Sci. Rep. 2017. V. 7. № 1. P. 1. https://doi.org/10.1038/s41598-017-02736-7
  17. Fang J., Beattie D.S. External alternative NADH dehydrogenase of Saccharomyces cerevisiae: a potential source of superoxide // Free Radic. Biol. Med. 2003. V. 34. № 4. P. 478. https://doi.org/10.1016/s0891-5849(02)01328-x
  18. Carneiro P., Duarte M., Videira A. Characterization of apoptosis-related oxidoreductases from Neurospora crassa // PLoS One. 2012. V. 7. № 3. P. e34270. https://doi.org/10.1371/journal.pone.0034270
  19. Smith C., Barthet M., Melino V., Smith P., Day D., Soole K. Alterations in the mitochondrial alternative NAD(P)H dehydrogenase NDB4 lead to changes in mitochondrial electron transport chain composition, plant growth and response to oxidative stress // Plant Cell Physiol. 2011. V. 52. №. 7. P. 1222. https://doi.org/10.1093/pcp/pcr073
  20. Wallström S.V., Florez-Sarasa I., Araújo W.L., Escobar M.A., Geisler D.A., Aidemark M., Lager I., Fernie A.R., Ribas-Carbó M., Rasmusson A.G. Suppression of NDA-type alternative mitochondrial NAD(P)H dehydrogenases in Arabidopsis thaliana modifies growth and metabolism, but not high light stimulation of mitochondrial electron transport // Plant Cell Physiol. 2014. V. 55. № 5. P. 881. https://doi.org/10.1093/pcp/pcu021
  21. Wallström S.V., Florez-Sarasa I., Araújo W.L., Aidemark M., Fernández-Fernández M., Fernie A.R., Ribas-Carbó M., Rasmusson A.G. Suppression of the external mitochondrial NADPH dehydrogenase, NDB1, in Arabidopsis thaliana affects central metabolism and vegetative growth // Mol. Plant. 2014. V. 7. № 2. P. 356. https://doi.org/10.1093/mp/sst115
  22. Grabelnych O.I., Borovik O.A., Tauson E.L., Pobezhimova T.P., Katyshev A.I., Pavlovskaya N.S., Koroleva N.A., Lyubushkina I.V., Bashmakov V.Y., Popov V.N., Borovskii G.B., Voinikov V.K. Mitochondrial energy-dissipating systems (alternative oxidase, uncoupling proteins, and external NADH dehydrogenase) are involved in development of frost-resistance of winter wheat seedlings // Biochem. (Mosc). 2014. V. 79. № 6. P. 506. https://doi.org/10.1134/S0006297914060030
  23. Allen D.J., Ort D.R. Impacts of chilling temperatures on photosynthesis in warm climate plants // Trends Plant Sci. 2001. V. 6. № 1. P. 36. https://doi.org/10.1016/s1360-1385(00)01808-2
  24. Aghaee A., Moradi F., Zare-Maivan H., Zarinkamar F., Irandoost H.P., Sharifi P. Physiological responses of two rice (Oryza sativa L.) genotypes to chilling stress at seedling stage // African J. Biotechnol. 2011. V. 10. P. 7617. https://doi.org/10.5897/AJB11.069
  25. Yang L.Y., Yang S.L., Li J.Y., Ma J.H., Pang T., Zou C.M., He B., Gong M. Effects of different growth temperatures on growth, development, and plastid pigments metabolism of tobacco (Nicotiana tabacum L.) plants // Bot. Stud. 2018. V. 59. № 5. P. 1. https://doi.org/10.1186/s40529-018-0221-2
  26. Sambrook J., Russel D.W. Molecular cloning: a laboratory manual. New York: Cold Spring Harbor Laboratory Press, 2001. 2100 p.
  27. Chen P.Y., Wang C.K., Soong S.C., To K.Y. Complete sequence of the binary vector pBI121 and its application in cloning T-DNA insertion from transgenic plants // Mol. Breed. 2003. V. 11. № 4. P. 287. https://doi.org/10.1023/A:1023475710642
  28. Belide S., Vanhercke T., Petrie J.R., Singh S.P. Robust genetic transformation of sorghum (Sorghum bicolor L.) using differentiating embryogenic callus induced from immature embryos // Plant Methods. 2017. V. 13. № 109. P. 1. https://doi.org/10.1186/s13007-017-0260-9
  29. Schmidt G.W., Delaney S.K. Stable internal reference genes for normalization of real-time RT-PCR in tobacco (Nicotiana tabacum) during development and abiotic stress // Mol. Genet. Genomics. 2010. V. 283. № 3. P. 233. https://doi.org/10.1007/s00438-010-0511-1
  30. Murashige T., Skoog F. A revised medium for rapid growth and bioassays with tobacco tissue cultures // Physiol. Plant. 1962. V. 15. P. 473. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
  31. Tarasenko V.I., Garnik E.Y., Shmakov V.N., Konstantinov Y.M. Modified alternative oxidase expression results in different reactive oxygen species contents in Arabidopsis cell culture but not in whole plants // Biol. Plant. 2012. V. 56. P. 635. https://doi.org/10.1007/s10535-012-0115-1
  32. Kozak M. Point mutations define a sequence flanking the AUG initiator codon that modulates translation by eukaryotic ribosomes // Cell. 1986. V. 44. P. 283. https://doi.org/10.1016/0092-8674(86)90762-2
  33. Gygi S.P., Rochon Y., Franza B.R., Aebersold R. Correlation between protein and mRNA abundance in yeast // Mol. Cell Biol. 1999. V. 19. № 3. P. 1720. https://doi.org/10.1128/MCB.19.3.1720
  34. Garmash E.V., Velegzhaninov I.O., Ermolina K.V., Rybak A.V., Malyshev R.V. Altered levels of AOX1a expression result in changes in metabolic pathways in Arabidopsis thaliana plants acclimated to low dose rates of ultraviolet B radiation // Plant Sci. 2020. V. 291. P. 110332. https://doi.org/10.1016/j.plantsci.2019.110332
  35. Clifton R., Lister R., Parker K.L., Sappl P.G., Elhafez D., Millar A.H., Day D.A., Whelan J. Stress-induced co-expression of alternative respiratory chain components in Arabidopsis thaliana // Plant Mol. Biol. 2005. V. 58. № 2. P. 193. https://doi.org/10.1007/s11103-005-5514-7
  36. Yoshida K., Noguchi K. Differential gene expression profiles of the mitochondrial respiratory components in illuminated Arabidopsis leaves // Plant Cell Physiol. 2009. V. 50. № 8. P. 1449. https://doi.org/10.1093/pcp/pcp090
  37. Liu Y.J., Norberg F.E.B., Szilagyi A., De Paepe R., A-kerlund H.E., Rasmusson A.G. The mitochondrial external NADPH dehydrogenase modulates the leaf NADPH/NADP(+) ratio in transgenic Nicotiana sylvestris // Plant Cell Physiol. 2008. V. 492008. P. 251. https://doi.org/10.1093/pcp/pcn001
  38. Grabelnych O.I. The energetic functions of plant mitochondria under stress // J. Stress Physiol. Biochem. 2005. V. 1. № 1. P. 37.
  39. Guo M., Liu J., Hou L., Zhao S., Zhang N., Lu L., Zhao X. The mitochondria-localized protein OsNDB2 negatively regulates grain size and weight in rice // Crop J. 2022. V. 10. P. 1819. https://doi.org/10.1016/j.cj.2022.07.016
  40. Sieger S.M., Kristensen B.K., Robson C.A., Amirsadeghi S., Eng E.W., Abdel-Mesih A., Møller I.M., Vanlerberghe G.C. The role of alternative oxidase in modulating carbon use efficiency and growth during macronutrient stress in tobacco cells // J. Exp. Bot. 2005. V. 56. № 416. P. 1499. https://doi.org/10.1093/jxb/eri146

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (1MB)
3.

Download (106KB)
4.

Download (144KB)
5.

Download (125KB)
6.

Download (100KB)
7.

Download (331KB)
8.

Download (65KB)

Copyright (c) 2023 Н.Е. Коротаева, А.М. Шигарова, А.И. Катышев, И.В. Федосеева, А.В. Федяева, Д.В. Савчин, А.М. Шишлова-Соколовская, О.Ю. Урбанович, Г.Б. Боровский

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies