The Use of Nanomaterials as a Plant-Protection Strategy from Adverse Temperatures

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

In the context of escalating climate threats around the world, there is a growing need to develop new strategies to increase plants' stress resistance. Innovative approaches in this direction are provided by nanotechnologies that ensure the production of various nanomaterials (NMs). These include structures less
than 100 nm in size that have unique physical and chemical properties. Due to this, NMs are able to penetrate biological barriers and accumulate in plant cells. The effects of NMs on a plant organism can be either positive or negative, depending on the chemical nature, sizes and concentrations of NMs, the object of study, and envi-
ronmental conditions. Many NMs in a certain concentration are able to regulate almost all processes in a plant organism: growth, water metabolism, activity of the photosynthetic apparatus, and pro-/antioxidant balance.
This suggests the possibility of using some NMs as adaptogens that enhance plants' stress resistance. This review presents a comparative analysis of experimental data on the use of NMs in plant physiology and agriculture to protect plants from the effects of unfavorable low and high temperatures. Possible mechanisms of NM action on
plants are discussed as well as a strategy for their further use in fundamental science and agriculture.

About the authors

Yu. V. Venzhik

Timiryazev Institute of Plant Physiology, Russian Academy of Sciences

Email: jul.venzhik@gmail.com
Moscow, Russia

A. N. Deryabin

Timiryazev Institute of Plant Physiology, Russian Academy of Sciences

Author for correspondence.
Email: jul.venzhik@gmail.com
Moscow, Russia

References

  1. Ali Sh., Rizwan M., Arif M.S., Ahmad R., Hasanuzzaman M., Ali B., Hussain A. Approaches in enhancing thermotolerance in plants: an updated review // J. Plant Growth Regul. 2020. V. 39. P. 456. https://doi.org/10.1007/s00344-019-09994-x
  2. John R., Anjum N.A., Sopory S.K., Akram N.A., Ashraf M. Some key physiological and molecular processes of cold acclimation // Biol. Plant. 2016. V. 60. P. 603. https://doi.org/10.1007/s10535-016-0648-9
  3. Dev A., Srivastava A.K., Karmakar S. Nanomaterial toxicity for plants // Environ. Chem. Lett. 2018. V. 16. P. 85. https://doi.org/10.1007/s10311-017-0667-6
  4. Venzhik Yu.V., Moshkov I.E., Dykman L.A. Influence of nanoparticles of metals and their oxides on the photosynthetic apparatus of plants // Biol. Bull. 2021. V. 48. P. 140. https://doi.org/10.1134/S106235902102014X
  5. Sarraf M., Vishwakarma K., Kumar V., Arif N., Das S., Johnson R., Janeeshma E., Puthur J.T., Aliniaeifard S., Chauhan D.K., Fujita M. Metal/metalloid-based nanomaterials for plant abiotic stress tolerance: an overview of the mechanisms // Plants. 2022. V. 11. P. 316. https://doi.org/10.3390/plants11030316
  6. Khan M.N., Mobin M., Abbas Z.K., AlMutairi K.A., Siddiqui Z.H. Role of nanomaterials in plants under challenging environments // Plant Physiol. Biochem. 2017. V. 110. P. 194. https://doi.org/10.1016/j.plaphy.2016.05.038
  7. Rizwan M., Ali S., Ali B., Adrees M., Arshad M., Hussain A., ur Rehman M.Z., Waris A.A. Zinc and iron oxide nanoparticles improved the plant growth and reduced the oxidative stress and cadmium concentration in wheat // Chemosphere. 2019. V. 214. P. 269. https://doi.org/10.1016/j.chemosphere.2018.09.120
  8. Mohammadi H., Amani-Ghadim A.R., Matin A.A., Ghorbanpour M. Fe0 nanoparticles improve physiological and antioxidative attributes of sunflower (Helianthus annuus) plants grown in soil spiked with hexavalent chromium // 3 Biotech. 2020. V. 10. P. 19. https://doi.org/10.1007/s13205-019-2002-3
  9. Bidi H., Fallah H., Niknejad Y., Tari D.B. Iron oxide nanoparticles alleviate arsenic phytotoxicity in rice by improving iron uptake, oxidative stress tolerance and diminishing arsenic accumulation // Plant Physiol. Biochem. 2021. V. 163. P. 348. https://doi.org/10.1016/j.plaphy.2021.04.020
  10. Latef A.A., Alhmad M.F., Abdelfattah K.E. The possible roles of priming with ZnO nanoparticles in mitigation of salinity stress in lupine (Lupinus termis) plants // J. Plant Growth Regul. 2017. V. 36. P. 60. https://doi.org/0.1007/s00344-016-9618-x
  11. Mohamed A.K.S.H., Qayyum M.F., Abdel-Hadi Ah.M., Rehman R.A., Ali Sh., Rizwan M. Interactive effect of salinity and silver nanoparticles on photosynthetic and biochemical parameters of wheat // Arch. Agron. Soil Sci. 2017. V. 63. P. 1736. https://doi.org/10.1080/03650340.2017.1300256
  12. Almutairi Z.M. Influence of silver nano-particles on the salt resistance of tomato (Solanum lycopersicum) during germination // Int. J. Agric. Biol. 2016. V. 18. P. 449.
  13. Khodakovskaya M.V., de Silva K., Biris A.S., Dervishi E., Villagarcia H. Carbon nanotubes induce growth enhancement of tobacco cells // ACS Nano. 2012. V. 6. P. 2128. https://doi.org/10.1021/nn204643g
  14. Siddiqi K.S., Husen A. Engineered gold nanoparticles and plant adaptation potential // Nanoscale Res. Let. 2016. V. 11: 400. https://doi.org/10.1186/s11671-016-1607-2
  15. Ковалева Н.Ю., Раевская Е.Г., Рощин А.В. Проблемы безопасности наноматериалов: нанобезопасность, нанотоксикология, наноинформатика // Химическая безопасность. 2017. Т. 1. С. 44. https://doi.org/10.25514/CHS.2017.2.10982
  16. Tighe-Neira R., Carmorac E., Recioc G., Nunes-Nesid A., Reyes-Diaze M., Alberdie M., Rengelg Z., Inostroza-Blancheteau C. Metallic nanoparticles influence the structure and function of the photosynthetic apparatus in plants // Plant Physiol. Biochem. 2018. V. 130. P. 408. https://doi.org/10.1016/j.plaphy.2018.07.024
  17. Zhao L., Bai T., Wei H., Gardea-Torresdey J.L., Keller A., White J.C. Nanobiotechnology-based strategies for enhanced crop stress resilience // Nature Food. 2022. V. 3. P. 829. https://doi.org/10.1038/s43016-022-00596-7
  18. Богатырев В.А., Дыкман Л.А., Хлебцов Н.Г. Методы синтеза наночастиц с плазмонным резонансом. Саратов: Саратовский государственный университет им. Н.Г. Чернышевского, 2009. 35 с.
  19. Rajput V.D., Minkina T.M., Behal A., Sushkova S.N., Mandzhieva S., Singh R., Gorovtsov A., Tsitsuashvili V.S., Purvis W.O., Ghazaryan K.A., Movsesyan H.S. Effects of zinc-oxide nanoparticles on soil, plants, animals and soil organisms: a review // Environ. Nanotechnol. Monit. Manag. 2018. V. 9. P. 76. https://doi.org/10.1016/j.enmm.2017.12.006
  20. Ferrari E., Barbero F., Busquets-Fité M., Franz-Wachtel M., Köhler H.-R., Puntes V., Kemmerling B. Growth-promoting gold nanoparticles decrease stress responses in Arabidopsis seedlings // Nanomaterials. 2021. V. 11. P. 3161. https://doi.org/10.3390/nano11123161
  21. Трунова Т.И. Растение и низкотемпературный стресс. 64-е Тимирязевское чтение. Москва: Наука, 2007. 54 с.
  22. Theocharis A., Clément Ch., Barka E.A. Physiological and molecular changes in plants grown at low temperatures // Planta. 2012. V. 235. P. 1091. https://doi.org/10.1007/s00425-012-1641-y
  23. Kreslavski V.D., Los D.A., Allakhverdiev S.I., Kuznetsov V.V. Signaling role of reactive oxygen species in plants under stress // Russ. J. Plant Physiol. 2012. V. 59. P. 141. https://doi.org/10.1134/S1021443712020057
  24. Hurry V. Metabolic reprogramming in response to cold stress is like real estate, it’s all about location // Plant Cell Environ. 2017. V. 40. P. 599. https://doi.org/10.1111/pce.12923
  25. Ding Ya., Shi Yi., Yang Sh. Advances and challenges in uncovering cold tolerance regulatory mechanisms in plants // New Phytol. 2019. V. 222. P. 1690. https://doi.org/10.1111/nph.15696
  26. Fürtauer L., Weiszmann J., Weckwerth W., Nӓgele Th. Dynamics of plant metabolism during cold acclimation // Int. J. Mol. Sci. 2019. V. 20. P. 5411. https://doi.org/10.3390/ijms20215411
  27. Lukatkin A., Brazaitytė A., Bobinas Č., Duchovskis P. Chilling injury in chilling-sensitive plants: a review // Zemdirbyste-Agriculture. 2012. V. 99. P. 111.
  28. Brattacharya A. Physiological processes in plants under low temperature stress. Singapore: Springer Nature Singapore Pte Ltd., 2022. 734 p.
  29. Praźak R., Ṥwięciło A., Krzepiłko A., Michałek S., Arczewska M. Impact of Ag nanoparticles on seed germination and seedling growth of green beans in normal and chill temperatures // Agriculture. 2020. V. 10: 312. https://doi.org/10.3390/agriculture10080312
  30. Haghighi M., Abolghasemi R., Teixeira da Silva J.A. Low and high temperature stress affect the growth characteristics of tomato in hydroponic culture with Se and nano-Se amendment // Scientia Horticulturae. 2014. V. 178. P. 231. https://doi.org/10.1016/j.scienta.2014.09.006
  31. Wu H., Tito N. Giraldo J.P. Anionic cerium oxide nanoparticles protect plant photosynthesis from abiotic stress by scavenging reactive oxygen species // ACS Nano. 2017. V. 11. P. 11283. https://doi.org/10.1021/acsnano.7b05723
  32. Azimi R., Borzelabad M.J., Feizi H., Azimi A. Interaction of SiO2 nanoparticles with seed prechilling on germination and early seedling growth of tall wheatgrass (Agropyron elongatum L.). // Pol. J. Chem. Tech. 2014. V. 16. P. 25. https://doi.org/10.2478/pjct-2014-0045
  33. Venzhik Yu., Deryabin A., Popov V., Dykman L., Moshkov I. Gold nanoparticles as adaptogens increasing the freezing tolerance of wheat seedlings // Environ. Sci. Poll. Res. 2022. V. 29. P. 5523. https://doi.org/10.1007/s11356-022-19759-x
  34. Venzhik Y.V., Deryabin A.N., Popov V.N., Dykman L.A., Titov A.F., Moshkov I.E. Influence of gold nanoparticles on the tolerance of wheat to low temperature // Dokl. Biochem. Biophys. 2022. V. 502. P. 5. https://doi.org/10.1134/S1607672922010100
  35. Ghabel V.K., Karamian R. Effects of TiO2 nanoparticles and spermine on antioxidant responses of Glycyrrhiza glabra L. to cold stress // Acta Bot. Croat. 2020. V. 79. P. 137. https://doi.org/10.37427/botcro-2020-025
  36. Wang A., Li J., Al-Huqail A.A., Al-Harbi M.S., Ali E.F., Wang J., Ding Z., Rekaby S.A., Ghoneim A.M., Eissa M.A. Mechanisms of chitosan nanoparticles in the regulation of cold sress resistance in banana plants // Nanomaterials. 2021. V. 11: 2670. https://doi.org/10.3390/nano11102670
  37. Mohammadi R., Maali-Amiri R., Abbasi A. Effect of TiO2 nanoparticles on chickpea response to cold stress // Biol. Trace Elem. Res. 2013. V. 152. P. 403. https://doi.org/10.1007/s12011-013-9631-x
  38. Mohammadi R., Maali-Amiri R., Mantri N. Effect of TiO2 nanoparticles on oxidative damage and antioxidant defense systems in chickpea seedlings during cold stress // Russ. J. Plant Physiol. 2014. V. 61. P. 768. https://doi.org/10.1134/S1021443714050124
  39. Song Y., Jiang M., Zhang H., Li R. Zinc oxide nanoparticles alleviate chilling stress in rice (Oryza sativa L.) by regulating antioxidative system and chilling response transcription factors // Molecules. 2021. V. 26. P. 2196. https://doi.org/10.3390/molecules26082196
  40. Lypez-Moreno M.L., de la Rosa G., Cruz-Jiménez G., Castellano L., Peralta-Videa J.R., Gardea-Torresdey J.L. Effect of ZnO nanoparticles on corn seedlings at different temperatures; X-ray absorption spectroscopy and ICP/OES studies // Microchem. J. 2017. V. 134. P. 54. https://doi.org/10.1016/j.microc.2017.05.007
  41. Iqbal M., Iqbal Raja N., Mashwani Z.U.R., Hussain M., Ejaz M., Yasmeen F. Effect of silver nanoparticles on growth of wheat under heat stress // Iran J. Sci. Technol. Trans Sci. 2019. V. 43. P. 387. https://doi.org/10.1007/s40995-017-0417-4
  42. Iqbal M., Iqbal Raja N., Mashwani Z.U.R., Wattoo F.H., Hussain M., Ejaz M., Saira H. Assessment of AgNPs exposure on physiological and biochemical changes and antioxidative defence system in wheat (Triticum aestivum L.) under heat stress // IET Nanobiotechnol. 2019. V. 13. P. 230. https://doi.org/10.1049/iet-nbt.2018.5041
  43. Shalaby T.A., Abd-Alkarim E., El-Aidy F., Hamed E.-S., Sharaf-Eldin M., Taha A., El-Ramady H., Bayoumi Y., Rodrigues dos Reis A.R. Nano-selenium, silicon and H2O2 boost growth and productivity of cucumber under combined salinity and heat stress // Ecotoxicol. Environ. Saf. 2021. V. 12: 111962. https://doi.org/10.1016/j.ecoenv.2021.111962
  44. Azmat A., Tanveer Y., Yasmin H., Hassan M.N., Shahzad A., Reddy M., Ahmad A. Coactive role of zinc oxide nanoparticles and plant growth promoting rhizobacteria for mitigation of synchronized effects of heat and drought stress in wheat plants // Chemosphere. 2022. V. 297: 133982. https://doi.org/10.1016/j.chemosphere.2022.133982
  45. Kareem H.A., Hassan M.U., Zain M., Irshad I., Shakoor N., Saleem S., Niu J.U., Skalicky M., Chen Zh., Guo Zh., Wang Q. Nanosized zinc oxide (n-ZnO) particles pretreatment to alfalfa seedlings alleviate heat-induced morpho-physiological and ultrastructural damages // Environmental Pollution. 2022. V. 303: 119069. https://doi.org/10.1016/j.envpol.2022.119069
  46. Thakur S., Asthir B., Kaur G., Kalia A., Sharma A. Zinc oxide and titanium dioxide nanoparticles influence heat stress tolerance mediated by antioxidant defense system in wheat // Cereal Res. Commun. 2022. V. 50. P. 385. https://doi.org/10.1007/s42976-021-00190-w
  47. Qi M., Liu Yu., Li T. Nano-TiO2 improve the photosynthesis of tomato leaves under mild heat stress // Biol. Trace Elem. Res. 2013. V. 156. P. 323. https://doi.org/10.1007/s12011-013-9833-2
  48. Helal N.M., Khattab H.I., Emam M.M., Niedbała G., Wojciechowski T., Hammami I., Alabdallah N.M., Eldin Darwish D.B., El-Mogy M.M., Hassan H.M. Improving yield components and desirable eating quality of two wheat genotypes using Si and NanoSi particles under heat stress // Plants. 2022. V. 11: 1819. https://doi.org/10.3390/plants11141819
  49. Djanaguiraman M., Belliraj N., Bossmann S.H., Vara Prasad P.V. High-temperature stress alleviation by selenium nanoparticle treatment in grain srghum // ACS Omega. 2018. V. 3. P. 2479. https://doi.org/10.1021/acsomega.7b01934
  50. Hassan N.S., Salah El Din T.A., Hendawey M.H., Borai I.H., Mahdi A.A. Magnetite and zinc oxide nanoparticles alleviated heat stress in wheat plants // Current nanomaterials. 2018. V. 3. P. 32. https://doi.org/10.2174/2405461503666180619160923
  51. Zheng L., Hong F.S., Lu S.P., Liu C. Effect of nano-TiO2 on strength of naturally aged seeds and growth of spinach // Biol. Trace Elem. Res. 2005. V. 104. P. 83.
  52. Khodakovskaya M., Dervishi E., Mahmood M., Xu Y., Li Z., Watanabe F. Carbon nanotubes are able to penetrate plant seed coat and dramatically affect seed germination and plant growth // ACS Nano. 2009. V. 3. P. 3221. https://doi.org/10.1021/nn900887m
  53. Khodakovskaya M.V., de Silva K., Nedosekin D.A., Dervishi E., Biris A.S., Shashkov E.V., Galanzha E.I., Zharov V.P. Complex genetic, photothermal, and photoacoustic analysis of nanoparticle-plant interactions // Proc. Natl. Acad. Sci. U. S. A. 2011. V. 108. P. 1028. https://doi.org/10.1073/pnas.1008856108
  54. Lahiani M.H., Dervishi E., Chen J., Nima Z., Gaume A., Biris A.S., Khodakovskaya M.V. Impact of carbon nanotube exposure to seeds of valuable crops // ACS Appl. Mater. Interfaces. 2013. V. 5. P. 7965. https://doi.org/10.1021/am402052x
  55. Milewska-Hendel A., Witek W., Rypień A., Zubko M., Baranski R., Stróż D., Kurczyńska E.U. The development of a hairless phenotype in barley roots treated with gold nanoparticles is accompanied by changes in the symplasmic communication // Sci. Rep. 2019. V. 9: 4724. https://doi.org/10.1038/s41598-019-41164-7
  56. Kumar V., Guleria P., Kumar V., Yadav S.K. Gold nanoparticle exposure induces growth and yield enhancement in Arabidopsis thaliana // Sci. Total Environ. 2013. V. 461. P. 462. https://doi.org/10.1016/j.scitotenv.2013.05.018
  57. Jalil S.U., Ansari M.I. Nanoparticles and abiotic stress tolerance in plants: synthesis, action, and signaling mechanisms // Plant signaling molecule: role and regulation under stressful environments / Eds. Khan M.I.R., Reddy P.S., Ferrante A., Khan N.A. Chennai: Elsevier, 2019. P. 549.
  58. Castiglione M.R., Giorgetti L., Cremonini R., Bottega S., Spanò C. Impact of TiO2 nanoparticles on Vicia narbonensis L.: potential toxicity effects // Protoplasma. 2014. V. 251. P. 1471. https://doi.org/10.1007/s00709-014-0649-5
  59. Хлебцов Н.Г. Оптика и биофотоника частиц с плазмонным резонансом // Квантовая электроника. 2008. № 6. С. 504.
  60. Das S., Debnath N., Pradhan S., Goswami A. Enhancement of photon absorption in the light-harvesting complex of isolated chloroplast in the presence of plasmonic gold nanosol – a nanobionic approach towards photosynthesis and plant primary growth augmentation // Gold Bull. 2017. V. 50. P. 247. https://doi.org/10.1007/s13404-017-0214-z
  61. Falco W.F., Botero E.R., Falcão E.A., Santiago E.F., Bagnato V.S., Caires A.R.L. In vivo observation of chlorophyll fluorescence quenching induced by gold nanoparticles // J. Photochem. Photobiol. A. 2011. V. 225. P. 65. https://doi.org/10.1016/j.jphotochem.2011.09.027
  62. Torres R., Diz V., Lagorio M.G. Effects of gold nanoparticles on the photophysical and photosynthetic parameters of leaves and chloroplasts // Photochem. Photobiol. Sci. 2018. V. 17. P. 505. https://doi.org/10.1039/C8PP00067K
  63. Li X., Sun H., Mao X., Lao Y., Chen F. Enhanced photosynthesis of carotenoids in microalgae driven by light-harvesting gold nanoparticles // ACS Sustainable Chem Eng. 2020. V. 8. P. 7600. https://doi.org/10.1021/acssuschemeng.0c00315
  64. Venzhik Yu., Deryabin A., Popov V., Dykman L., Moshkov I. Priming with gold nanoparticles leads to changes in the photosynthetic apparatus and improves the cold tolerance of wheat // Plant Physiol. Biochem. 2022. V. 190. P. 145. https://doi.org/10.1016/j.plaphy.2022.09.006
  65. Hasanpour H., Maali-Amiri R., Zeinali H. Effect of TiO2 nanoparticles on metabolic limitations to photosynthesis under cold in chickpea // Russ. J. Plant Physiol. 2015. V. 62. P. 779. https://doi.org/10.1134/S1021443715060096
  66. Hassan H., Alatawi A., Abdulmajeed A., Emam M., Khattab H. Roles of Si and SiNPs in improving thermotolerance of wheat photosynthetic machinery via upregulation of PsbH, PsbB and PsbD genes encoding PSII core proteins // Horticulturae. 2021. V. 7: 16. https://doi.org/10.3390/horticulturae7020016
  67. Kelly K.L., Coronado E., Zhao L.L., Schatz G.C. The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment // J. Phys. Chem. B. 2003. V. 107. P. 668. https://doi.org/10.1021/jp026731y
  68. Wei H., Wang E. Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes // Chem. Sov. Rev. 2013. V. 42. P. 6060. https://doi.org/10.1039/C8CS00457A
  69. Liu Y., Xiao Z., Chen F., Yue L., Zou H., Lyu J., Wang Z. Metallic oxide nanomaterials act as antioxidant nanozymes in higher plants: trends, meta-analysis, and prospect // Sci. Total. Environ. 2021. V. 780. P. 146578. https://doi.org/10.1016/j.scitotenv.2021.146578
  70. Kohan-Baghkheirati E., Geisler-Lee J. Gene expression, protein function and pathways of Arabidopsis thaliana responding to silver nanoparticles in comparison to silver ions, cold, salt, drought, and heat // Nanomaterials. 2015. V. 5. P. 436. https://doi.org/10.3390/nano5020436
  71. Wu J., Wang T. Synergistic effect of zinc oxide nanoparticles and heat stress on the alleviation of transcriptional gene silencing in Arabidopsis thaliana // Bull. Environ. Contam. Toxicol. 2020. V. 104. P. 49. https://doi.org/10.1007/s00128-019-02749-0
  72. Mirzajani F., Askari H., Hamzelou S., Schober Y., Röompp A., Ghassempour A., Spengler B. Proteomics study of silver nanoparticles toxicity on Oryza sativa L. // Ecotoxicol. Environ. Saf. 2014. V. 108. P. 335. https://doi.org/10.1016/j.ecoenv.2014.07.013
  73. Miao Y., Xu J., Shen Y., Chen L., Bian Y., Hu Y., Zhou W., Zheng F., Man N., Shen Y., Zhang Y., Wang M., Wen L. Nanoparticle as signaling protein mimic: robust structural and functional modulation of CaMKII upon specific binding to fullerene C60 nanocrystals // ACS Nano. 2014. V. 8. P. 6131. https://doi.org/10.1021/nn501495a
  74. Чумаков Д.С., Соколов А.О., Богатырев В.А., Соколов О.И., Селиванов Н.Ю., Дыкман Л.А. “Зеленый” синтез наночастиц золота с использованием культур клеток Arabidopsis thaliana и Dunaliella salina // Российские нанотехнологии. 2018. Т. 13. С. 85.
  75. Singh A.K., Tiwari R., Singh V.K., Singh P., Khadim S.R., Singh U., Laxmia Srivastava V., Hasan S.H., Asthan R.K. Green synthesis of gold nanoparticles from Dunaliella salina, its characterization and in vitro anticancer activity on breast cancer cell line // J. Drug Deliv. Sci. Technol. 2019. V. 51. P. 164. https://doi.org/10.1016/j.jddst.2019.02.023
  76. Iavicoli I., Leso V., Fontana L., Calabrese E.J. Nanoparticle exposure and hormetic dose-responses: an update // Int. J. Mol. Sci. 2018. V. 19: 805. https://doi.org/10.3390/ijms19030805
  77. Дыкман Л.А., Хлебцов Н.Г. Биомедицинское применение многофункциональных золотых нанокомпозитов // Успехи современной биологии. 2016. Т. 516. С. 411.
  78. Dykman L., Khlebtsov N. Gold nanoparticles in biomedical applications. Boca Raton: CRC Press, 2017. 332 p.
  79. Ramalingam V. Multifunctionality of gold nanoparticles: plausible and convincing properties // Adv. Colloid Interface Sci. 2019. V. 271: 101989. https://doi.org/10.1016/j.cis.2019.101989
  80. Pissuwan D., Poomrattanangoon R., Chungchaiyart P. Trends in using gold nanoparticles for inducing cell differentiation: a review // ACS Appl. Nano Mater. 2022. V. 5. P. 3110. https://doi.org/10.1021/acsanm.1c04173
  81. Gunjan B., Zaidi M.G.H., Sandeep A. Impact of gold nanoparticles on physiological and biochemical characteristics of Brassica juncea // J. Plant Biochem. Physiol. 2014. V. 2. P. 133. https://doi.org/10.4172/2329-9029.1000133
  82. Feichtmeier N.S., Walther P., Leopold K. Uptake, effects, and regeneration of barley plants exposed to gold nanoparticles // Environ. Sci. Pollut. Res. 2015. V. 22. P. 8549. https://doi.org/10.1007/s11356-014-4015-0
  83. Hawthorne J., Musante C., Sinha S.K., White J.C. Accumulation and phytotoxicity of engineered nanoparticles to Cucurbita pepo // Int. J. Phytoremediation. 2012. V. 14. P. 429. https://doi.org/10.1080/15226514.2011.620903
  84. Gopinath K., Gowri S., Karthika V., Arumugam A. Green synthesis of gold nanoparticles from fruit extract of Terminalia arjuna, for the enhanced seed germination activity of Gloriosa superba // J. Nanostruc. Chem. 2014. V. 4. P. 1. https://doi.org/10.1007/s40097-014-0115-0
  85. Barrena R., Casals E., Colón J., Font X., Sánchez A., Puntes V. Evaluation of the ecotoxicity of model nanoparticles // Chemosphere. 2009. V. 75. P. 850. https://doi.org/10.1016/j.chemosphere.2009.01.078
  86. Ndeh N.T., Maensiri S., Maensiri D. The effect of green synthesized gold nanoparticles on rice germination and roots // Adv. Nat. Sci.: Nanosci. Nanotechnol. 2017. V. 8: 035008.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (403KB)
3.

Download (99KB)

Copyright (c) 2023 Ю.В. Венжик, А.Н. Дерябин

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies