Improving Salt Stress Tolerance of Triticum aestivum L. with Endophytic Strains of Bacillus subtilis

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The effect of salt stress on Triticum aestivum L. plants inoculated with endophytic strains of B. subtilis was studied. The treatment of Triticum aestivum L. with endophytic bacterial strains of B. subtilis was shown to increase plant resistance to the stress factor. The inoculation reduced the development of oxidative stress and the entry of sodium ions into aboveground plant organs. The antistress effect of endophytic strains of B. subtilis and their ability to reduce the absorption of sodium ions by Triticum aestivum L. plants can be employed to promote plant growth during cultivation of crops on saline lands.

Авторлар туралы

Z. Kuramshina

Sterlitamak Branch of Ufa University of Science and Technology

Хат алмасуға жауапты Автор.
Email: kuramshina_zilya@mail.ru
Ресей, Sterlitamak

R. Khairullin

Institute of Biochemistry and Genetics, Ufa Federal Research Center, Russian Academy of Sciences

Email: kuramshina_zilya@mail.ru
Ресей, Ufa

Әдебиет тізімі

  1. Ji C., Tian H., Wang X., Song X., Ju R., Li H., Gao Q., Li C., Zhang P., Li J., Hao L., Wang C., Zhou Y., Xu R., Liu Y. et al. Bacillus subtilis HG-15, a halotolerant rhizoplane bacterium, promotes growth and salinity tolerance in wheat (Triticum aestivum) // BioMed Research International. 2022. V. 2022. https://doi.org/10.1155/2022/9506227
  2. Gamalero E., Bona E., Todeschini V., Lingua G. Saline and arid soils: impact on bacteria, plants, and their interaction // Biology. 2020. V. 9: 116. https://doi.org/10.3390/biology9060116
  3. Polash M.A., Sakil M.A., Hossain M.A. Plants responses and their physiological and biochemical defense mechanisms against salinity: A review // Trop. Plant Res. 2019. V. 6. P. 250.
  4. Fortt J., González M., Morales P., Araya N., Remonsellez F., Coba de la Peña T., Ostria-Gallardo E., Stoll A. Bacterial modulation of the plant ethylene signaling pathway improves tolerance to salt stress in lettuce (Lactuca sativa L.) // Front. Sustain. Food Syst. 2022. V. 6: 768250. https://doi.org/10.3389/fsufs.2022.768250
  5. Ren C.-G., Kong C.-C., Liu Z.-Y., Zhong Z.-H., Yang J.-C., Wang X.-L., Qin S. A perspective on developing a plant ‘holobiont’ for future saline agriculture // Front. Microbiol. 2022. V. 13: 763014. https://doi.org/10.3389/fmicb.2022.763014
  6. Gao Y., Zou H., Wang B., Yuan F. Progress and applications of plant growth-promoting bacteria in salt tolerance of crops // Int. J. Mol. Sci. 2022. V. 23: 7036. https://doi.org/10.3390/ijms23137036
  7. Krishnamoorthy R., Roy Choudhury A., Walitang D.I., Anandham R., Senthilkumar M., Sa T. Salt stress tolerance-promoting proteins and metabolites under plant-bacteria-salt stress tripartite interactions // Appl. Sci. 2022. V. 12: 3126. https://doi.org/10.3390/ app12063126
  8. Gupta A., Mishra R., Rai S., Bano A., Pathak N., Fujita M., Kumar M., Hasanuzzaman M. Mechanistic insights of plant growth promoting bacteria mediated drought and salt stress tolerance in plants for sustainable agriculture // Int. J. Mol. Sci. 2022. V. 23: 3741. https://doi.org/10.3390/ijms2307374
  9. Kumar A., Singh S., Gaurav A.K., Srivastava S., Verma J.P. Plant growth-promoting bacteria: biological tools for the mitigation of salinity stress in plants // Front. Microbiol. 2020. V. 11: 1216. https://doi.org/10.3389/fmicb.2020.01216
  10. Hameed A., Ahmed M.Z., Hussain T., Aziz I., Ahmad N., Gul B., Nielsen B.L. Effects of salinity stress on chloroplast structure and function // Cells. 2021. V. 10: 2023. https:// doi.org/https://doi.org/10.3390/cells10082023
  11. Ahmad R., Anjum M.A., Khalid M.F., Saqib M., Hassan A. Oxidative stress and antioxidant defense mechanisms in plants under salt stress // Plant Abiotic Stress Tolerance / Eds. Hasanuzzaman M. et al. Springer, Cham. 2019. P. 475. https://doi.org/10.1007/978-3-030-06118-0_8
  12. Pal K.K., Dey R., Sherathia D.N., Devidayal Mangalassery S., Kumar A., Rupapara R.B., Mandaliya M., Rawal P., Bhadania R.A., Thomas M., Patel M.B., Maida P., Nawade B.D., Ahmad S., Dash P., Radhakrishnan T. Alleviation of salinity stress in peanut by application of endophytic bacteria // Front. Microbiol. 2021. V. 12: 650771. https://doi.org/10.3389/fmicb.2021.650771
  13. Bezrukova M.V., Lubyanova A.R., Fatkhutdinova R.A. The involvement of wheat and common bean lectins in the control of cell division in the root apical meristems of various plant species // Russian Journal of Plant Physiology. 2011. V. 58. P. 174.
  14. Khairullin R.M., Yarullina L.G., Troshina N.B., Akhmetova I.E. Chitooligosaccharide-induced activation of o-phenylenediamine oxidation by wheat seedlings in the presence of oxalic acid // Biochemistry (Moscow). 2001. V. 66. P. 286.
  15. Королюк М.А., Иванова Л.И., Майорова И.Г., Токарев В.Е. Метод определения активности каталазы // Лабораторное дело. 1988. № 1. С. 16.
  16. Costa H., Gallego S.M., Tomaro M.L. Effect of UV-B radiation on antioxidant defense system in sunflower cotyledons // Plant Sci. 2002. V. 162. P. 939.
  17. Folin O., Ciocalteu O. On tyrosine and tryptophane determinations in proteins // J. Biol. Chem. 1927. V. 73. P. 627.
  18. Singleton V.L., Rossi J.A. Colorimetry of total phenolics with phosphomolyb-dicphoungstic acid reagent // Am. J. Enol. Vitic. 1965. V. 16. P. 144.
  19. Шихалеева Г.Н., Будняк А.К., Шихалеев И.И., Иващенко О.Л. Модифицированная методика определения пролина в растительных объектах // Вісник Харківського національного університету імені В. Н. Каразіна. Серія: біологія. 2014. Вип. 21. С. 168.
  20. ГОСТ 57059-2016. Корма, комбикорма, комбикормовое сырье. экспресс метод определения влаги. Москва: Стандартинформ, 2020. 6 с. https://internet-law.ru/gosts/gost/62895/
  21. ГОСТ 32250-2013 (ISO 7485:2000). Корма, комбикорма. Метод определения содержания калия и натрия с применением пламенно-эмиссионной спектрометрии. Москва: Стандартинформ, 2020. 13 с.
  22. Мелентьев А.И. Аэробные спорообразующие бактерии Bacillus Cohc в агроэкосистемах. Москва: Наука, 2007. 147 с.
  23. Egorshina A.A., Luk’yantsev M.A., Khairullin R.M., Sakhabutdinova A.R. Involvement of phytohormones in the development of interaction between wheat seedlings and endophytic Bacillus subtilis strain 11BM // Russian Journal of Plant Physiology. 2012. V. 59. P. 134.
  24. Fatima A., Hussain S., Hussain S., Ali B., Ashraf U., Zulfiqar U., Aslam Z., Al-Robai S.A., Alzahrani F.O., Hano C., El-Esawi M.A. Differential morphophysiological, biochemical, and molecular responses of maize hybrids to salinity and alkalinity stresses // Agron. 2021. V. 11: 1150. https://doi.org/10.3390/agronomy11061150
  25. Khan I., Muhammad A., Chattha M.U., Skalicky M., Bilal Chattha M., Ahsin Ayub M., Rizwan Anwar M., Soufan W., Hassan M.U., Rahman M.A., Brestic M., Zivcak M., El Sabagh A. Mitigation of salinity-induced oxidative damage, growth, and yield reduction in fine rice by sugarcane press mud application // Front. Plant Sci. 2022. V. 13: 840900. https://doi.org/10.3389/fpls.2022.84090
  26. Santander C., Vidal G., Ruiz A., Vidal C., Cornejo P. Salinity eustress increases the biosynthesis and accumulation of phenolic compounds that improve the functional and antioxidant quality of red lettuce // Agronomy. 2022. V. 12: 598. https://doi.org/10.3390/ agronomy12030598

© З.М. Курамшина, Р.М. Хайруллин, 2023

Осы сайт cookie-файлдарды пайдаланады

Біздің сайтты пайдалануды жалғастыра отырып, сіз сайттың дұрыс жұмыс істеуін қамтамасыз ететін cookie файлдарын өңдеуге келісім бересіз.< / br>< / br>cookie файлдары туралы< / a>