Effect of Brassinosteroids on the Ion-Exchange Properties of the Cell Walls of Barley Roots and Shoots under the Action of Heavy Metals

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The effect of polymetallic contamination and concomitant treatment with brassinosteroids (homocastasterone or homobrassinolide) on barley plants and on the ion-exchange capacity of cell walls isolated from shoots and roots was studied. Under the influence of polymetals, a decrease in the dry mass of roots, water content, and the proportion of the cell wall in them was observed, but the addition of homocastasterone to the medium led to the restoration of these parameters almost to the control level. In the aerial part of plants, the influence of both polymetals and brassinosteroids on these parameters was weakly expressed. In the presence of homocastasterone, the content of demethylated carboxyl groups of polygalacturonic acid increased in the pectins of the cell walls of roots and leaves, which are the main binding sites for heavy metal ions in the apoplast. Thus, it can be assumed that treatment with brassinosteroids (homocastasterone) leads to a change in the composition and ion-exchange properties of the cell wall, which makes it possible to reduce the toxic effect of polymetals due to their immobilization in the apoplast.

About the authors

N. R. Meichik

Lomonosov Moscow State University

Email: meychik@mail.ru
Russian Federation, Moscow

Yu. I. Nikolaeva

Lomonosov Moscow State University

Email: meychik@mail.ru
Russian Federation, Moscow

M. V. Efimova

Tomsk State University

Email: meychik@mail.ru
Russian Federation, Tomsk

E. D. Danilova

Tomsk State University

Email: meychik@mail.ru
Russian Federation, Tomsk

O. V. Nikushin

Lomonosov Moscow State University

Email: meychik@mail.ru
Russian Federation, Moscow

M. A. Kushunina

Lomonosov Moscow State University

Author for correspondence.
Email: meychik@mail.ru
Russian Federation, Moscow

References

  1. Kour J., Kohli S.K., Khanna K., Bakshi P., Sharma P., Singh A.D., Ibrahim M., Devi K., Sharma N., Ohri P., Skalicky M., Brestic M., Bhardwaj R., Landi M., Sharma A. Brassinosteroid signaling, crosstalk and, physiological functions in plants under heavy metal stress // Front. Plant Sci. 2021. V. 12. P. 608061. https://doi.org/10.3389/fpls.2021
  2. Rajewska I., Talarek M., Bajguz A. Brassinosteroids and response of plants to heavy metals action // Front. Plant Sci. 2016. V. 7. P. 629. https://doi.org/10.3389/fpls.2016.00629
  3. Hayat S., Hasan S.A., Hayat Q., Ahmad A. Brassinosteroids protect Lycopersicon esculentum from cadmium toxicity applied as shotgun approach // Protoplasma. 2010. V. 239. P. 3. https://doi.org/10.1007/s00709-009-0075-2
  4. Sharma P., Bhardwaj R., Arora N., Arora H.K. Effect of 28-homobrassinolide on growth, zinc metal uptake and antioxidative enzyme activities in Brassica juncea L. seedlings // Braz. J. Plant Physiol. 2007. V. 19. P. 203. https://doi.org/10.1590/S1677-04202007000300004
  5. Sharma P., Kumar A., Bhardwaj R. Plant steroidal hormone epibrassinolide regulate – Heavy metal stress tolerance in Oryza sativa L. by modulating antioxidant defense expression // Environ. Exp. Bot. 2016. V. 122. P. 1. https://doi.org/10.1016/j.envexpbot.2015.08.005
  6. Ali B., Hasan S.A., Hayat S., Hayat Q., Yadav S., Fariduddin Q., Ahmad A. A role for brassinosteroids in the amelioration of aluminum stress through antioxidant system in mung bean (Vigna radiata L. Wilczek) // Environ. Exp. Bot. 2008. V. 62. P. 153. https://doi.org/10.1016/j.envexpbot.2007.07.014
  7. Abdullahi B.A., Gu X.-G., Gan Q.-L., Yang Y.-H. Brassinolide amelioration of aluminium toxicity in mung bean seedling growth // J. Plant Nutr. 2003. V. 26. P. 1725. https://doi.org/10.1081/PLN-120023278
  8. Fariduddin Q., Khanam S., Hasan S.A., Ali B., Hayat S., Ahmad A. Effect of 28-homobrassinolide on the drought stress-induced changes in photosynthesis and antioxidant system of Brassica juncea L. // Acta Physiol. Plant. 2009. V. 31. P. 889. https://doi.org/10.1007/s11738-009-0302-7
  9. Ramakrishna B., Rao S.S.R. Foliar application of brassinosteroids alleviates adverse effects of zinc toxicity in radish (Raphanus sativus L.) plants // Protoplasma. 2015. V. 252. P. 665. https://doi.org/10.1007/s00709-014-0714-0
  10. Kozuka T., Kobayashi J., Horiguchi G., Demura T., Sakakibara H., Tsukaya H., Nagatani A. Involvement of auxin and brassinosteroid in the regulation of petiole elongation under the shade // Plant Physiol. 2010. V. 153. P. 1608. https://doi.org/10.1104/pp.110.156802
  11. Bashline L., Lei L., Li S.D., Gu Y. Cell wall, cytoskeleton, and cell expansion in higher plants // Mol. Plant. 2014. V. 7. P. 586. https://doi.org/10.1093/mp/ssu018
  12. Rao X., Dixon R.A. Brassinosteroid mediated cell wall remodeling in grasses under abiotic stress // Front. Plant Sci. 2017. V. 8. P. 806. https://doi.org/10.3389/fpls.2017.00806
  13. Qu T., Liu R.F., Wang W., An L.Z., Chen T., Liu G.X., Zhao Z. Brassinosteroids regulate pectin methylesterase activity and AtPME41 expression in Arabidopsis under chilling stress // Cryobiology. 2011. V. 63. P. 111. https://doi.org/10.1016/j.cryobiol.2011.07.003
  14. Shen H., Mazarei M., Hisano H., Escamilla-Trevino L., Fu C.X., Pu Y.Q., Rudis M.R., Tang Y., Xiao X., Jackson L., Li G., Hernandez H., Chen F., Ragauskas A.J., Stewart C.N., et al. A genomics approach to deciphering lignin biosynthesis in switchgrass // Plant Cell. 2013. V. 25. P. 4342. https://doi.org/10.1105/tpc.113.118828
  15. Haynes R.J. Ion exchange properties of roots and ionic interactions within the root apoplasm. Their role in ion accumulation by plants // Bot. Rev. 1980. V. 46. P. 75. https://doi.org/10.1007/BF02860867
  16. Danilova E.D., Zlobin I.E., Kuznetsov V.V., Efimova M.V. Exogenic melatonin reduces the toxic effect of polymetallic stress on barley plants // Doklady Biochemistry and Biophysics. 2021. V. 499. P. 228. https://doi.org/10.1134/S1607672921040049
  17. Meychik N.R., Yermakov I.P. Ion exchange properties of plant root cell walls // Plant Soil. 2001. V. 234. P. 181. https://doi.org/10.1023/A:1017936318435
  18. Meychik N.R., Yermakov I.P. A new approach to the investigation on the ionogenic groups of root cell walls // Plant Soil. 1999. V. 217. P. 257. https://doi.org/10.1023/A:1004675309128
  19. Meychik N., Nikolaeva Y., Kushunina M., Yermakov I. Are the carboxyl groups of pectin polymers the only metal-binding sites in plant cell walls? // Plant Soil. 2014. V. 381. P. 25. https://doi.org/10.1007/s11104-014-2111-z
  20. Mohnen D. Pectin structure and biosynthesis // Current Opinion in Plant Biology. 2008. V. 11. P. 266. https://doi.org/10.1016/j.pbi.2008.03.006
  21. Colzi I., Arnetoli M., Gallo A., Doumett S., Del Bubba M., Pignattelli S., Gabbrielli R., Gonnelli C. Copper tolerance strategies involving the root cell wall pectins in Silene paradoxa L. // Environ. Exp. Bot. 2012. V. 78. P. 91. https://doi.org/10.1016/j.envexpbot.2011.12.028
  22. Liu T., Shen C., Wang Y., Huang C., Shi J. New insights into regulation of proteome and polysaccharide in cell wall of Elsholtzia splendens in response to copper stress // PLoS One. 2014. V. 9: e109573. https://doi.org/10.1371/journal.pone.0109573
  23. Eticha D., Stass A., Horst W.J. Cell-wall pectin and its degree of methylation in the maize root-apex: significance for genotypic differences in aluminium resistance // Plant, Cell Environ. 2005. V. 28. P. 1410. https://doi.org/10.1111/j.1365-3040.2005.01375.x
  24. Meychik N., Nikolaeva Yu., Kushunina M., Yermakov I. Contribution of apoplast to short-term copper uptake by wheat and mung bean roots // Funct. Plant Biol. 2016. V. 43. P. 403. https://doi.org/10.1071/FP15356
  25. Meychik N., Nikolaeva Yu., Kushunina M. The role of the cell walls in Ni binding by plant roots // J. Plant Physiol. 2019. V. 234. P. 28. https://doi.org/10.1016/j.jplph.2019.01.008
  26. Meychik N.R., Nikolaevaa Yu.I., Nikushina O.V., Kushuninaa M.A. The Effect of Polymetallic Pollution on Ion-Exchange Properties of Barley Root and Shoot Cell Walls // Doklady Biochemistry and Biophysics. 2021. V. 501. P. 415. https://doi.org/10.1134/S160767292106003X
  27. Gabbrielli R., Pandolfini T., Espen L., Palandri M.R. Growth, peroxidase activity and cytological modifications in Pisum sativum seedlings exposed to Ni2+ toxicity // J. Plant Physiol. 1999. V. 155. P. 639. https://doi.org/10.1016/S0176-1617(99)80066-2
  28. Pandey N., Sharma C.P. Effect of heavy metals Co2+, Ni2+ and Cd2+ on growth and metabolism of cabbage // Plant Sci. 2002. V. 163. P. 753. https://doi.org/10.1016/S0168-9452(02)00210-8

Copyright (c) 2023 Н.Р. Мейчик, Ю.И. Николаева, М.В. Ефимова, Е.Д. Данилова, О.В. Никушин, М.А. Кушунина

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies