Trans-Factor PTF1 Participates in the Response to Salinity but Does Not Regulate Expression of the psbD Gene in Arabidopsis thaliana

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The existing data on the role of PTF1/TCP13 belonging to the TCP family of transcription factors in regulating expression of a psbD plastid gene encoding a D2 protein of PSII are controversial. To analyze biological functions of PTF1/TCP13, transformed plants expressing PTF1/TCP13 under a β-estradiolinducible promoter were used. PTF1/TCP13 overexpression did not provide the expected increase in the accumulation of psbD transcripts transcribed from BLRP (Blue Light Responsive Promoter), though their level significantly increased under exposure to light or abscisic acid (ABA). PTF1/TCP13 was up-regulated by ABA; moreover, genes of the canonic pathway of the ABA signal transduction were involved in the regulation of PTF1/TCP13 expression. In addition, PTF1/TCP13 was induced in response to salt stress However, in the overexpressing line, salt tolerance and expression of salt stress markers, as well as a number of genes for the synthesis and signaling of ABA, were reduced compared to plants with the normal level of expression of this transcription factor, that is, PTF1/TCP13 acted as a negative regulator of salt stress Thus, PTF1 does not belong to plastid transcription factors. Nevertheless, it represents one of the components of the ABA-dependent regulatory chain capable of modifying expression of nuclear and chloroplast genes in response to changes in homeostasis.

About the authors

A. A. Andreeva

Timiryazev Institute of Plant Physiology, Russian Academy of Sciences

Email: nvkudryakova@mail.ru
Russian Federation, Moscow

I. A. Bychkov

Timiryazev Institute of Plant Physiology, Russian Academy of Sciences

Email: nvkudryakova@mail.ru
Russian Federation, Moscow

N. V. Kudryakova

Timiryazev Institute of Plant Physiology, Russian Academy of Sciences

Author for correspondence.
Email: nvkudryakova@mail.ru
Russian Federation, Moscow

V. V. Kuznetsov

Timiryazev Institute of Plant Physiology, Russian Academy of Sciences

Email: nvkudryakova@mail.ru
Russian Federation, Moscow

References

  1. Wagner R., Pfannschmidt T. Eukaryotic transcription factors in plastids – bioinformatic assessment and implications for the evolution of gene expression machineries in plants // Gene. 2006. V. 381. P. 62. https://doi.org/10.1016/j.gene.2006.06.022
  2. Schwacke R., Fischer K., Ketelsen B., Krupinska K., Krause K. Comparative survey of plastid and mitochondrial targeting properties of transcription factors in Arabidopsis and rice // Mol. Genet. Genomics. 2007. V. 277. P. 631. https://doi.org/10.1007/s00438-007-0214-4
  3. Baba K., Nakano T., Yamagishi K., Yoshida S. Involvement of a nuclear-encoded basic helix-loop-helix protein in transcription of the light-responsive promoter of PsbD // Plant Physiol. 2001. V. 125. P. 595. https://doi.org/10.1104/pp.125.2.595
  4. Kodama Y. Plastidic proteins containing motifs of nuclear transcription factors // Plant Biotechnology. 2007. V. 24. P. 165. https://doi.org/10.5511/plantbiotechnology.24.165
  5. Kodama Y., Sano H. A comparative analysis of basic helix-loop-helix proteins, AtPTF1 and NtWIN4, with reference to plastid localization // Plant Biotech. 2007. V. 24. P. 335. https://doi.org/10.5511/plantbiotechnology.24.335
  6. Yamburenko M.V., Zubo Y.O., Börner T. Abscisic acid affects transcription of chloroplast genes via protein phosphatase 2C-dependent activation of nuclear genes: repression by guanosine-3-′5′-bisdiphosphate and activation by sigma factor 5 // Plant J. 2015. V. 82. P. 1030. https://doi.org/10.1111/tpj.12876
  7. Zabala M.T., Littlejohn G., Jayaraman S., Studholme D., Bailey T., Lawson T., Tillich M., Licht D., Bölter B., Delfino L., Truman W., Mansfield J., Smirnoff N., Grant M. Chloroplasts play a central role in plant defence and are targeted by pathogen effectors // Nat. Plants. 2015. V. 1. 15074. https://doi.org/10.1038/NPLANTS.2015.74
  8. Hur Y.-S., Kim J., Kim S., Son O., Kim W.-Y., Kim G.-T., Takagi M.O., Choong-Ill Cheon C. Identification of TCP13 as an upstream regulator of ATHB12 during leaf development genes // Genes. 2019. V. 10. P. 644. https://doi.org/10.3390/genes10090644
  9. Urano K., Maruyama K., Koyama T., Gonzalez N., Kazuko D.I., Shinozaki Y., Shinozaki K. CIN-like TCP13 is essential for plant growth regulation under dehydration stress // Plant Mol. Biol. 2022. V. 108. P. 257. https://doi.org/10.1007/s11103-021-01238-5
  10. Coego A., Brizuela E., Castillejo P., Ruíz S., Koncz C., Pozo J.C., Piñeiro M., Jarillo J.A., Paz-Ares J., León J. The TRANSPLANTA collection of Arabidopsis lines: a resource for functional analysis of transcription factors based on their conditional overexpression // Plant J. 2014. V. 77. P. 944. https://doi.org/10.1111/tpj.12443
  11. Danilova M.N., Kudryakova N.V., Doroshenko A.S., Zabrodin D.A., Rakhmankulova Z.F., Oelmüller R., Kusnetsov V.V. Opposite roles of the Arabidopsis cytokinin receptors AHK2 and AHK3 in the expression of plastid genes and genes for the plastid transcriptional machinery during senescence // Plant Mol. Biol. 2017. V. 93. P. 533. https://doi.org/10.1007/s11103-016-0580-6
  12. Belbin F.E., Noordally Z.B., Wetherill S.J., Atkins K.A., Franklin K.A., Dodd A.N. Integration of light and circadian signals that regulate chloroplast transcription by a nuclear-encoded sigma factor // New Phytol. 2017. V. 213. P. 727. https://doi.org/10.1111/nph.14176
  13. Bates L.S., Waldren R.P., Teare I.D. Rapid determination of free proline for water-stress studies // Plant Soil. 1973. V. 39. P. 205.
  14. Heath L.R., Packer L. Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation // Arch. Biochem. Biophys. 1968. V. 125. P. 189.
  15. Nishiyama R., Watanabe Y., Fujita Y., Le D.T., Kojima M., Werner T., Vankova R., Yamaguchi-Shinozaki K., Shinozaki K., Kakimoto T., Sakakibara H., Schmülling T., Tran L.P. Analysis of cytokinin mutants and regulation of cytokinin metabolic genes reveals important regulatory roles of cytokinins in drought, salt and abscisic acid responses, and abscisic acid biosynthesis // Plant Cell. 2011. V. 23. P. 2169. https://doi.org/10.1105/tpc.111.087395
  16. Miyakawa T., Fujita Y., Yamaguchi-Shinozaki K., Tanokura M. Structure and function of abscisic acid receptors // Trends Plant Sci. 2013. V. 18. P. 259 https://doi.org/10.1016/j.tplants.2012.11.002
  17. Krupinska K., Blanco N.E., Oetke S., Zottini M. Genome communication in plants mediated by organelle–nucleus-located proteins // Phylosophical transection of the royal society. 2020. V. 375. 20190397. https://doi.org/10.1098/rstb.2019.0397
  18. Ding S., Zhang Y., Hu Z., Huang X., Zhang B., Lu Q., Wang Y., Lu C. mTERF5 acts as a transcriptional pausing factor to positively regulate transcription of chloroplast psbEFLJ // Mol. Plant. 2019. V. 12. P. 1259. https://doi.org/10.1016/j.molp.2019.05.007
  19. Zhang Y., Cui Y.L., Zhang X.L., Yu Q.B., Wang X., Yuan X.B., Qin X.M., He X.F., Huang C., Yang Z.N. A nuclear-encoded protein, mTERF6, mediates transcription termination of rpoA polycistron for plastid-encoded RNA polymerase-dependent chloroplast gene expression and chloroplast development // Sci. Rep. 2018. V. 8. 11929. https://doi.org/10.1038/s41598-018-30166-6
  20. Tsunoyama Y., Ishizaki Y., Morikawa K., Kobori M., Nakahira Y., Takeba G., Toyoshima Y., Shiina T. Blue light-induced transcription of plastid-encoded psbD gene is mediated by a nuclear-encoded transcription initiation factor, AtSig5 // Proc. Natl. Acad. Sci. USA. 2004. V. 101. P. 3304. https://doi.org/10.1073/pnas.0308362101
  21. Lerbs-Mache S. Function of plastid sigma factors in higher plants: regulation of gene expression or just preservation of constitutive transcription? // Plant Mol. Biol. 2011. V. 76. P. 235. https://doi.org/10.1007/s11103-010-9714-4
  22. Cackett L., Cannistraci C.V., Meier S., Ferrandi P., Pěnčík A., Gehring C., Novák O., Ingle R.A., Donaldson L. Salt-specific gene expression reveals elevated auxin levels in Arabidopsis thaliana plants grown under saline conditions // Frontiers in Plant Science. 2022. V. 13. 804716. https://doi.org/10.3389/fpls.2022.804716

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (100KB)
3.

Download (272KB)
4.

Download (148KB)
5.

Download (314KB)
6.

Download (184KB)
7.

Download (349KB)

Copyright (c) 2023 А.А. Андреева, И.А. Бычков, Н.В. Кудрякова, В.В. Кузнецов

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies