Changes in Composition and Content of Lipophilic Compounds in the Seedlings of Triticum aestivum L. Treated with Stress Phytohormones

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Exposure of plants to biotic and abiotic stress agents causes changes in the composition and content of metabolites of different chemical nature, including lipophilic compounds. One of the ways to simulate a stress situation is plant treatment with exogenous phytohormones. This work deals with investigation of organ specificity of composition of lipophilic compounds and changes in their content in wheat Triticum aestivum L. seedlings treated with exogenous stress hormones: abscisic acid (ABA), salicylic acid (SA), and methyl jasmonate (MeJA). It was found that roots and leaves of wheat seedlings have identical composition of lipophilic compounds but their content considerably differed. In the leaves, the quantity of hydrocarbons, including squalene, as well as triterpenes, sterols, and phosphatidyl choline, was much greater than in the roots. In the leaves, glycoceramides of type 1 containing a FA residue with α-hydroxyl group predominated; on the contrary, glycoceramides of type 2 whose FA residues lack α-hydroxyl group prevailed in the roots. Moreover, lipid extracts from the leaves contain lipophilic pigments (chlorophylls a and b and carotenoids) and hydrophobic phenolic compounds in the form of hydroxycinnamic acids. Treatment with stress phytohormones brings about considerable changes in growth characteristics, the rate of photosynthesis, and the profile of lipophilic compounds in wheat seedlings depending on the plant organ and the chemical nature of the phytohormone. In the case of ABA and MeJA, the growth of roots and leaves was suppressed, the level of nonphotochemical quenching rose, and the content of photosynthetic pigments changed. An unexpected effect was observed upon treatment with MeJA that raised the level of cholesterol and phosphatidyl serine. SA was notable for organ-specific changes in the content of products of mevalonate pathway, triterpenes, and sterols. Thus, the simulation of stress conditions by means of treatment of wheat seedlings with exogenous phytohormones strongly affected the composition of lipophilic compounds. Specific changes in lipid composition induced by hormones may contribute to adaptive structural transformations of cellular membranes, whereas changes in the content of hydrophobic phenolic metabolites and photosynthetic pigments may reinforce antioxidant defense of plants under stress conditions.

About the authors

A. G. Renkova

Kazan Institute of Biochemistry and Biophysics, Federal Research Center, Kazan Scientific Center, Russian Academy of Sciences

Author for correspondence.
Email: minibayeva@kibb.knc.ru
Russian Federation, Kazan

V. R. Khabibrakhmanova

Kazan Institute of Biochemistry and Biophysics, Federal Research Center, Kazan Scientific Center, Russian Academy of Sciences; Kazan National Research Technological University

Email: minibayeva@kibb.knc.ru
Russian Federation, Kazan; Kazan

A. V. Chasov

Kazan Institute of Biochemistry and Biophysics, Federal Research Center, Kazan Scientific Center, Russian Academy of Sciences

Email: minibayeva@kibb.knc.ru
Russian Federation, Kazan

J. N. Valitova

Kazan Institute of Biochemistry and Biophysics, Federal Research Center, Kazan Scientific Center, Russian Academy of Sciences

Email: minibayeva@kibb.knc.ru
Russian Federation, Kazan

E. I. Galeeva

Kazan Institute of Biochemistry and Biophysics, Federal Research Center, Kazan Scientific Center, Russian Academy of Sciences

Email: minibayeva@kibb.knc.ru
Russian Federation, Kazan

F. V. Minibayeva

Kazan Institute of Biochemistry and Biophysics, Federal Research Center, Kazan Scientific Center, Russian Academy of Sciences; Kazan (Volga Region) Federal University

Email: minibayeva@kibb.knc.ru
Russian Federation, Kazan; Kazan

References

  1. Hou Q., Ufer G., Bartels D. Lipid signalling in plant responses to abiotic stress // Plant Cell Environ. 2016. V. 39. P. 1029. https://doi.org/10.1111/pce.12666
  2. Valitova J., Renkova A., Mukhitova F., Dmitrieva S., Minibayeva F. Membrane sterols and genes of sterol biosynthesis are involved in the response of Triticum aestivum seedlings to cold stress // Plant Physiol. Biochem. 2019. V. 142. P. 452. https://doi.org/10.1016/j.plaphy.2019.07.026
  3. Lu J., Xu Y., Wang J., Singer S.D., Chen G. The role of triacylglycerol in plant stress response // Plants (Basel). 2020. V. 9. P. 472. https://doi.org/10.3390/plants9040472
  4. Testerink C., Munnik T. Molecular, cellular, and physiological responses to phosphatidic acid formation in plants // J. Exp. Bot. 2011. V. 62. P. 2349. https://doi.org/10.1093/jxb/err079
  5. Vinogradov N.V., Andreeva A.A., Danilova M.N., Doroshenko A.S., Kudryakova N.V., Kusnetsov V.V. The ABA- and stress-induced expression of the Arabidopsis thaliana AT4G0180 gene is determined by the cis-elements responsible for binding the ABA-dependent trans-factors // Russ. J. Plant Physiol. 2019. V. 66. P. 521. https://doi.org/10.1134/S0015330319020167
  6. Verma V., Ravindran P., Kumar P.P. Plant hormone-mediated regulation of stress responses // BMC Plant Biology. 2016. V. 16. P. 1. https://doi.org/10.1186/s12870-016-0771-y
  7. Yu Z., Duan X., Luo L., Dai S., Ding Z., Xia G. How plant hormones mediate salt stress responses // Trends Plant Sci. 2020. V. 25. P. 1117. Epub 2020 Jul 13.https://doi.org/10.1016/j.tplants.2020.06.008
  8. Kotlova E.R., Shavarda A.L., Kiyashko A.A., Psurtseva N.V., Senik S.V., Sinyutina N.F., Kücher T., Zubarev R.A. Alterations in the composition of membrane glycero- and sphingolipids in the course of Flammulina velutipes surface culture development // Microbiology. 2009. V. 78. P. 193.
  9. Запрометов М.Н. Фенольные соединения и их роль в жизни растения. 56-е Тимирязевское чтение. Москва: Наука, 1996. 45 с.
  10. Кейтс М. Техника липидологии: Выделение, анализ и идентификация липидов // Пер. с англ. д-ра хим. наук В. А. Вавера. Москва: Мир, 1975. 322 с.
  11. Stanley L., Yuan Y.-W. Transcriptional regulation of carotenoid biosynthesis in plants: so many regulators, so little consensus // Front. Plant Sci. 2019. V. 10. P. 1017. https://doi.org/10.3389/fpls.2019.01017
  12. Федулов Ю.П., Подушин Ю.В. Содержание и соотношение хлорофиллов в листьях озимой пшеницы в зависимости от агротехнических приемов ее выращивания // Научный журнал КубГАУ. 2009. Т. 51. С. 1.
  13. Ренкова А.Г., Хабибрахманова В.Р., Валитова Ю.Н., Мухитова Ф.К., Минибаева Ф.В. Действие стрессовых фитогормонов на метаболизм стеринов Triticum aestivum L. // Физиология растений. 2021. Т. 68. С. 279. https://doi.org/10.31857/S0015330321020159
  14. Aboobucker S.I., Suza W.P. Why do plants convert sitosterol to stigmasterol? // Front. Plant Sci. 2019. V. 10. P. 354. https://doi.org/10.3389/fpls.2019.00354
  15. Botella C., Jouhet J., Block M.A. Importance of phosphatidylcholine on the chloroplast surface // Prog. Lipid Res. 2017. V. 65. P. 12. https://doi.org/10.1016/j.plipres.2016.11.001
  16. Rozentsvet O.A., Bogdanova E.S., Nesterov V.N., Kosobryukhov A.A. Daytime dynamics of the photosynthetic apparatus’ structural and functional parameters in wild halophytes // Russ. J. Plant Physiol. 2019. V. 66. P. 901.
  17. Розенцвет О.А., Шуйская Е.В., Богданова Е.С., Нестеров В.Н., Иванова Л.А. Структура хлоренхимы и липидный профиль мембран в листьях галофитов сем. Chenopodiaceae с разным типом фотосинтеза // Физиология растений. 2022. Т. 69. С. 68.
  18. Finkelstein R. Abscisic acid synthesis and response // The Arabidopsis Book. 2013. V. 11: e0166.
  19. Khan M.I.R., Fatma M., Per T.S., Anjum N.A., Khan N.A. Salicylic acid-induced abiotic stress tolerance and underlying mechanisms in plants // Front. Plant Sci. 2015. V. 6: 462. https://doi.org/10.3389/fpls.2015.00462
  20. Turner J.G., Ellis C., Devoto A. The jasmonate signal pathway // Plant Cell. 2002. V. 14. P. s153. https://doi.org/10.1105/tpc.000679
  21. Kumari P., Reddy C.R.K., Jha B. Methyl jasmonate-induced lipidomic and biochemical alterations in the intertidal macroalga Gracilaria dura (Gracilariaceae, Rhodophyta) // Plant Cell Physiol. 2015. V. 56. P. 1877. https://doi.org/10.1093/pcp/pcv115
  22. Brookbank B.P., Patel J., Gazzarrini S., Nambara E. Role of basal aba in plant growth and development // Genes. 2021. V. 12. P. 1936. https://doi.org/10.3390/ genes12121936
  23. Haisel D., Pospišilova J., Synkova H., Schnablova R., Baťkova P. Effects of abscisic acid or benzyladenine on pigment contents, chlorophyll fluorescence, and chloroplast ultrastructure during water stress and after rehydration // Photosynthetica. 2006. V. 44. P. 606.
  24. Khavari M., Fatahi R., Zamani Z. Salicylic acid and kaolin effects on pomological, physiological, and phytochemical characters of hazelnut (Corylus avellana) at warm summer condition // Sci. Rep. 2021. V. 11: 4568. https://doi.org/10.1038/s41598-021-83790-0
  25. Ma X., Zheng J., Zhang X., Hu Q., Qian R. Salicylic acid alleviates the adverse effects of salt stress on Dianthus superbus (Caryophyllaceae) by activating photosynthesis, protecting morphological structure, and enhancing the antioxidant system // Front. Plant Sci. 2017. V. 8: 600.
  26. Moreira-Rodríguez M., Nair V., Benavides J., Cisneros-Zevallos L., Jacobo-Velázquez D.A. UVA, UVB light, and methyl jasmonate, alone or combined, redirect the biosynthesis of glucosinolates, phenolics, carotenoids, and chlorophylls in broccoli sprouts // Int. J. Mol. Sci. 2017. V. 18: 2330. https://doi.org/10.3390/ijms18112330
  27. Pérez A.G., Sanz C., Richardson D.G., Olías J.M. Methyl jasmonate vapor promotes β-carotene synthesis and chlorophyll degradation in Golden Delicious apple peel // J. Plant Growth Regul. 1993. V. 12. P. 163.
  28. Jung S. Effect of chlorophyll reduction in Arabidopsis thaliana by methyl jasmonate or norflurazon on antioxidant systems // Plant Physiol. Biochem. 2004. V. 42. P. 225.
  29. Kurowska M.M., Daszkowska-Golec A., Gajecka M., Kościelniak P., Bierza W., Szarejko I. Methyl jasmonate affects photosynthesis efficiency, expression of hvtip genes and nitrogen homeostasis in barley // Int. J. Mol. Sci. 2020. V. 21: 4335. https://doi.org/10.3390/ijms21124335
  30. Barickman T.C., Kopsell D.A., Sams C.E. Abscisic acid increases carotenoid and chlorophyll concentrations in leaves and fruit of two tomato genotypes // J. Amer. Soc. Hort. Sci. 2014. V. 139. P. 261. https://doi.org/10.21273/JASHS.139.3.261
  31. Oracz K., Karpiński S. Phytohormones signaling pathways and ros involvement in seed germination // Front. Plant Sci. 2016. V. 7: 864. https://doi.org/10.3389/fpls.2016.00864
  32. Horbowicz M., Wiczkowski W., Goraj-Koniarska J., Miyamoto K., Ueda J., Saniewski M. Effect of methyl jasmonate on the terpene trilactones, flavonoids, and phenolic acids in Ginkgo biloba L. leaves: relevance to leaf senescence // Molecules. 2021. V. 26: 4682. Ahttps://doi.org/10.3390/molecules26154682
  33. Wani S.H., Kumar V., Shriram V., Sah S.K. Phytohormones and their metabolic engineering for abiotic stress tolerance in crop plants // The Crop Journal. 2016. V. 4. P. 162.
  34. Zhou C., Li X., Zhou Z., Li C., Zhang Y. Comparative transcriptome analysis identifies genes involved in diosgenin biosynthesis in Trigonella foenum-graecum // Molecules. 2019. V. 24: 140. https://doi.org/10.3390/molecules24010140
  35. Chen M., Chen J., Luo N., Qu R., Guo Z., Lu S. Cholesterol accumulation by suppression of SMT1 leads to dwarfism and improved drought tolerance in herbaceous plants // Plant Cell Environ. 2018. V. 41. P. 1417. https://doi.org/Ltdwileyonlinelibrary.com/journal/pce1417
  36. Vance J.E., Steenbergen R. Metabolism and functions of phosphatidylserine // Prog. Lipid Res. 2005. V. 44. P. 207. https://doi.org/10.1016/j.plipres.2005.05.001
  37. Yu Y., Kou M., Gao Z., Liu Y., Xuan Y., Liu Y., Tang Z., Cao Q., Li Z., Sun J. Involvement of phosphatidylserine and triacylglycerol in the response of sweet potato leaves to salt stress // Front. Plant Sci. 2019. V. 10: 1086. https://doi.org/10.3389/fpls.2019.01086

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (54KB)
3.

Download (177KB)
4.

Download (159KB)

Copyright (c) 2023 А.Г. Ренкова, В.Р. Хабибрахманова, А.В. Часов, Ю.Н. Валитова, Е. И. Галеева, Ф.В. Минибаева

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies