Secondary metabolism in Taxus spp. plant cell culture in vitro

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The genus Taxus (yew) is a source of a number of high-value medicinal substances, particularly, paclitaxel (taxol)—a complex diterpenoid compound with a powerful antitumor action (trade name of Taxol®). Paclitaxel is one of the most efficient drugs in chemotherapy owing to its specific ability to suppress proliferation of tumor cells via stabilization of their microtubules. The world-wide demand for taxol is 800–1000 kg a year and these figures annually rise by 20%. The growing need for paclitaxel and its derivatives and the shortage of plant resources necessary for their production made compounds of the taxane group one of the most important objects for development of biotechnological methods of their production. Out of all the possible ways of taxol production (isolation from wild or plantation trees, total chemical synthesis or semisynthesis, use of yew cell cultures, techniques of metabolic engineering, and use of yew endophytic fungi), the most promising is industrial cultivation of Taxus spp. cell cultures. This review examines the papers dealing with investigation of secondary metabolism in dedifferentiated cells in vitro of various yew species and feasibility of industrial use of cell cultures for production of taxoids. We revealed a number of specificity of Taxus spp. Cell cultures: (1) from a cytophysiological aspect—difficult initiation of cell cultures, their low growth characteristics, specific media and culturing conditions; (2) from a phytochemical aspect—distinction from intact plants in qualitative composition and content of secondary metabolites accounted for by specificity of cell culture as a biological system; predominant formation of С14-hydroxylated rather than of С13-hydroxylated taxoids; an opportunity for elevation of the content of taxoids—including commercially valuable ones (paclitaxel and baccatin III) with the aid of different tools (elicitation, stress exposures, two-phase cultivation and some others); (3) from a biotechnological aspect—possibility of industrial cultivation of yew cell cultures; existence of several successful industries (Germany and the Republic of Korea).

About the authors

S. V. Tomilova

Timiryazev Institute of Plant Physiology, Russian Academy of Sciences

Email: al_nosov@mail.ru
Russian Federation, Moscow

E. B. Globa

Timiryazev Institute of Plant Physiology, Russian Academy of Sciences

Email: al_nosov@mail.ru
Russian Federation, Moscow

E. V. Demidova

Timiryazev Institute of Plant Physiology, Russian Academy of Sciences

Email: al_nosov@mail.ru
Russian Federation, Moscow

A. M. Nosov

Timiryazev Institute of Plant Physiology, Russian Academy of Sciences; Lomonosov Moscow State University

Author for correspondence.
Email: al_nosov@mail.ru
Russian Federation, Moscow; Moscow

References

  1. Murthy H.N., Dandin V.S., Joseph K.S., Park S.Y., Paek K.Y. Plant cell and organ culture as an alternative for the production of anticancer compounds // Anticancer plants: natural products and biotechnological implements / Eds. M. S. Akhtar, M. K. Swamy. Singapore: Springer Nature, 2018. P. 429. https://doi.org/10.1007/978-981-10-8064-7_18
  2. Exposito O., Bonfill M., Moyano E., Onrubia M., Mirjalili M.H., Cusido R.M., Palazon J. Biotechnological production of taxol and related taxoids: current state and prospects // Anticancer Agents Med. Chem. 2009. V. 9. P. 109. https://doi.org/10.2174/187152009787047761
  3. Nimasow G., Nimasow O.D., Rawat J.S., Norbu L. Conservation efforts of an important medicinal plant (Taxus baccata Linn.) in West Kameng district of Arunachal Pradesh (India) // Earth Sci. 2015. V. 4. P. 1. https://doi.org/10.11648/j.earth.s.2015040301.11
  4. Malik S., Cusido R.M., Mirjalili M.H., Moyano E., Palazon J., Bonfill M. Production of the anticancer drug taxol in Taxus baccata suspension cultures: A review // Process Biochem. 2011. V. 46. P. 23. https://doi.org/10.1016/j.procbio.2010.09.004
  5. Zhu L., Chen L. Progress in research on paclitaxel and tumor immunotherapy // Cell. Mol. Biol. Lett. 2019. V. 24. P. 40. https://doi.org/10.1186/s11658-019-0164-y
  6. Ismaiel A.A., Ahmed A.S., Hassan I.A., El-Sayed E.S.R., Karam El-Din A.Z.A. Production of paclitaxel with anticancer activity by two local fungal endophytes, Aspergillus fumigatus and Alternaria tenuissima // Appl. Microbiol. Biotechnol. 2017. V. 101. P. 5831. https://doi.org/10.1007/s00253-017-8354-x
  7. Maheshwari P., Garg S., Kumar A. Taxoids: biosynthesis and in vitro production // Biotech. Mol. Biol. Rev. 2008. V. 3. P. 071.
  8. McElroy C., Jennewein S. Taxol® biosynthesis and production: from forests to fermenters // Biotechnology of Natural Products / Eds. W. Schwab, B.M. Lange, M. Wust. Cham: Springer International Publishing. 2018. P. 145. https://doi.org/10.1007/978-3-319-67903-7_7
  9. Wang T., Li L., Zhuang W., Zhang F., Shu X., Wang N., Wang Z. Recent research progress in taxol biosynthetic pathway and acylation reactions mediated by Taxus a-cyltransferases // Molecules. 2021. V. 26. P. 2855. https://doi.org/10.3390/molecules26102855
  10. Wang Y.F., Shi Q.W., Dong M., Kiyota H., Gu Y.C., Cong B. Natural taxanes: developments since 1828 // Chem. Rev. 2011. V. 111. P. 7652. https://doi.org/10.1021/cr100147u
  11. Wilson S.A., Roberts S.C. Recent advances towards development and commercialization of plant cell culture processes for the synthesis of biomolecules // Plant Biotechnol. J. 2012. V. 10. P. 249. https://doi.org/10.1111/j.1467-7652.2011.00664.x
  12. Spjut R.W. Taxonomy and nomenclature of Taxus (Taxaceae) // J. Bot. Res. Inst. Tex. 2007. V. 1. P. 203.
  13. Hao D.C., Xiao P.G., Ge G.B., Liu M. Biological, chemical, and omics research of Taxus medicinal resources // Drug. Development Res. 2012. V. 73. P. 477. https://doi.org/10.1002/ddr.21040
  14. Spjut R.W. A phytogeographical analysis of Taxus (Taxaceae) based on leaf anatomical characters // J. Bot. Res. Inst. Texas. 2007. V. 1. P. 291.
  15. Li J., Davis C.C., Tredici P.D., Donoghue M.J. Phylogeny and biogeography of Taxus (Taxaceae) inferred from sequences of the internal transcribed spacer region of nuclear ribosomal DNA // Harv. Pap. Bot. 2001. V. 6. P. 267.
  16. Lange B.M., Conner C.F. Taxanes and taxoids of the genus Taxus – A comprehensive inventory of chemical diversity // Phytochem. 2021. V. 190. P. 112829. https://doi.org/10.1016/j.phytochem.2021.112829
  17. Topcu G., Demirkiran O. Lignans from Taxus species // Top Heterocycl Chem. 2007. V. 11. P. 103. https://doi.org/10.1007/7081_2007_082
  18. Dang P.H., Nguyen H.X., Nguyen H.H.T., Vo T.D., Le T.H., Phan T.H.N., Nguyen M.T.T., Nguyen N.T. Lignans from the roots of Taxus wallichiana and their α‒glucosidase inhibitory activities // J. Nat. Prod. 2017. V. 80. P. 1876. https://doi.org/10.1021/acs.jnatprod.7b00171
  19. Krauze-Baranowska M. Flavonoids from the genus Taxus // Z Naturforsch C J Biosci. 2004. V. 59. P. 43. https://doi.org/10.1515/znc-2004-1-210
  20. Bekhouche M., Benyammi R., Slaoui M.K., Krimat S., Paris C., Khelifi L., Morsli A. Flavonoid profile and antioxidant properties of Algerian common yew (Taxus baccata L.) // Clinical Phytosci. 2022. V. 8. P. 17. https://doi.org/10.1186/s40816-022-00348-x
  21. Bekhouche M., Morsli A., Slaoui M.K., Benyammi R., Krimat S., Paris C., Khelifi L. Antioxidant properties of the needles of Taxus baccata L. growing in Algeria and characterization of their antioxidant constituents by LC–DAD–ESI–MSn // J. Global Trends Pharm. Sci. 2021. V. 12. P. 9026.
  22. Wilson C.R., Hooser S.B. Toxicity of yew (Taxus spp.) alkaloids // Veterinary Toxicology. Basic and Clinical Principles / Ed. by R.C. Gupta. USA: Academic Press. 2018. P. 947. https://doi.org/10.1016/B978-0-12-811410-0.00066-0
  23. Sinha D. A review on taxanes: an important group of anticancer compound obtained from Taxus sp. // IJPSR. 2020. V. 11. P. 1969. https://doi.org/10.13040/IJPSR.0975-8232.11(5).1969-85
  24. Nicolaou K.C., Valiulin R.A. Synthesis and biological evaluation of new paclitaxel analogs and discovery of potent antitumor agents // Org. Biomol. Chem. 2013. V. 11. P. 4154. https://doi.org/10.1039/c3ob40654g
  25. Tabaszewska M., Antoniewska A., Rutkowska J., Skoczylas L., Slupski J., Skoczen-Slupska R. Bioactive components, volatile profile and in vitro antioxidative properties of Taxus baccata L. red arils // Molecules. 2021. V. 26. P. 4474. https://doi.org/10.3390/molecules26154474
  26. Bekhouche M., Benyammi R., Khelifi Slaoui M., Khelifi L., Morsli A. Free radical scavenging activity and detailed flavonoid profiling of Algerian yew (Taxus baccata L.) by LC–ESI–MS/MS // IJPSR. 2021. V. 12. P. 2613. https://doi.org/10.13040/IJPSR.0975-8232.12(5).2613-19
  27. Филиппова С.Н., Логвина А.О., Спиридович Е.В. Органо- и тканеспецифические особенности проявления антирадикального потенциала и содержания фенольных соединений в растениях рода Taxus spp. // Экспериментальная биология и биотехнология. 2022. Т. 1. С. 48. https://doi.org/10.33581/2957-5060-2022-1-48-58
  28. Pinto A., Lemos T., Silveira I., Aragao I. Taxus baccata intoxication: the sun after the electrical storm // Rev. Bras. Ter. Intensiva. 2021. V. 33. P. 172. https://doi.org/10.5935/0103-507X.20210019
  29. Valis M., Koci J., Tucek D., Lutonsky T., Kopova J., Barton P., Vysata O., Krajickova D., Korabecny J., Masopust J., Klzo L. Common yew intoxication: a case report // J. Med. Case Rep. 2014. V. 8. P. 4. https://doi.org/10.1186/1752-1947-8-4
  30. Бутенко Р.Г. Биология клеток высших растений in vitro и биотехнологии на их основе. Москва: ФБК-ПРЕСС, 1999. 160 с.
  31. Некора С.В., Комов В.П. Способность к каллусогенезу у эксплантов хвои пяти видов рода Taxus L. // Растительные ресурсы. 2001. Т. 37. С. 100.
  32. Дубравина Г.А., Зайцева С.М., Загоскина Н.В. Изменения в образовании и локализации фенольных соединений при дедифференциации тканей тисса ягодного и тисса канадского в условиях in vitro // Физиология растений. 2005. Т. 52. С. 755.
  33. Загоскина Н.В., Зайцева С.М., Александрова М.С. Изменения в образовании фенольных соединений при введении клеток тисса ягодного (Taxus baccata L.) и тисса канадского (Taxus canadensis Marsh.) в культуру in vitro // Биотехнология. 2007. В. 1. С.29.
  34. Fett-Neto A.G., Melanson S.J., Nicholson S.A., Pennington J.J., DiCosmo F. Improved taxol yield by aromatic carboxylic acid and amino acid feeding to cell cultures of Taxus cuspidata // Biotech. Bioeng. 1994. V.44. P. 967. https://doi.org/10.1002/bit.260440813
  35. Nosov A.M., Popova E.V., Kochkin D.V. Isoprenoid production via plant cell cultures: biosynthesis, accumulation and scaling-up to bioreactors // Production of Biomass and Bioactive Compounds Using Bioreactor Technology / Eds. K.Y. Paek, H.N. Murthy, J.J. Zhong. Dordrecht: Springer. 2014. P. 563. https://doi.org/10.1007/978-94-017-9223-3_23
  36. Cusido R.M., Onrubia M., Sabater-Jara A.B., Moyano E., Bonfill M., Goossens A., Angeles Pedreno M., Palazon J. A rational approach to improving the biotechnological production of taxanes in plant cell cultures of Taxus spp. // Biotechnol. Adv. 2014. V. 32. P. 1157. https://doi.org/10.1016/j.biotechadv.2014.03.002
  37. Глоба Е.Б., Демидова Е.В., Гайсинский В.В., Кочкин Д.В. Получение и характеристика каллусной и суспензионной культур клеток тиса Валлиха (Taxus wallichiana Zucc.) // Вестник СВФУ. 2018. № 2. С. 18. https://doi.org/10.25587/SVFU.2018.64.12127
  38. Глоба Е.Б., Черняк Н.Д., Носов А.М. Получение культуры клеток из уникального растения тиса Taxus baccata // Материалы Международной конференции с элементами научной школы для молодежи “Перспективы фитобиотехнологии для улучшения качества жизни на Севере”. Якутск, 2010. С. 97.
  39. Ketchum R.E.B., Gibson D.M. Paclitaxel production in suspension cell cultures of Taxus // Plant Cell Tiss Organ Cult. 1996. V. 46. P. 9. https://doi.org/10.1007/BF00039691
  40. Kochkin D.V., Globa E.B., Demidova E.V., Gaisinsky V.V., Galishev B.A., Kolotyrkina N.G., Kuznetsov Vl.V., Nosov A.M. Occurrence of 14-hydroxylated taxoids in the plant in vitro cell cultures of different yew species (Taxus spp.) // Dokl. Biochem. Biophys. 2017. V. 476. P. 337. https://doi.org/10.1134/S1607672917050131
  41. Кочкин Д.В., Глоба Е.Б., Демидова Е.В., Гайсинский В.В., Кузнецов Вл.В., Носов А.М. Обнаружение таксуюннанина С в суспензионной культуре клеток тиса канадского (Taxus canadensis) // Доклады Академии наук. 2019. Т. 485. С. 374. https://doi.org/10.31857/S0869-56524853374-376
  42. Bonfill M., Exposito O., Moyano E., Cusido R.M., Palazon J., Pinol M.T. Manipulation by culture mixing and elicitation of paclitaxel and baccatin III production in Taxus baccata suspension cultures // In Vitro Cell. Dev. Biol. Plant. 2006. V. 42. P. 422. https://doi.org/10.1079/IVP2006761
  43. Senger R.S., Phisalaphong M., Karim M.N., Linden J.C. Development of a culture sub-population induction model: signaling pathways synergy and taxanes production by Taxus canadensis // Biotechnol. Prog. 2006. V. 22. P. 1671. https://doi.org/10.1021/bp0602552
  44. Mirjalili N., Linden J.C. Methyl jasmonate induced production of taxol in suspension cultures of Taxus cuspidata: ethylene interaction and induction models // Biotechnol. Prog. 1996. V. 12. P. 110. https://doi.org/10.1021/bp9500831
  45. Bai J., Kitabatake M., Toyoizumi K., Fu L., Zhang S., Dai J., Sakai J., Hirose K., Yamori T., Tomida A., Tsuruo T., Ando M. Production of biologically active taxoids by a callus culture of Taxus cuspidata // J. Nat. Prod. 2004. V. 67. P. 58. https://doi.org/10.1021/np0301083
  46. Zhang C.H., Mei X.G., Liu L., Yu L.J. Enhanced paclitaxel production induced by the combination of elicitors in cell suspension cultures of Taxus chinensis // Biotechnol. Letters. 2000. V. 22. P. 1561. https://doi.org/10.1023/A:1005684901329
  47. Khosroushahi A.Y., Valizadeh M., Ghasempour A., Khosrowshahli M., Naghdibadi H., Dadpour M.R., Omidi Y. Improved taxol production by combination of inducing factors in suspension cell culture of Taxus baccata // Cell Biol. Intern. 2006. V. 30. P. 262. https://doi.org/10.1016/j.cellbi.2005.11.004
  48. Bonfill M., Bentebibel S., Moyano E., Palazon J., Cusido R.M., Eibl R., Pinol M.T. Paclitaxel and baccatin III production induced by methyl jasmonate in free and immobilized cells of Taxus baccata // Biol. Plant. 2007. V. 51. P. 647. https://doi.org/10.1007/s10535-007-0137-2
  49. Onrubia M., Moyano E., Bonfill M., Cusido R.M., Goossens A., Palazon J. Coronatine, a more powerful elicitor for inducing taxane biosynthesis in Taxus media cell cultures than methyl jasmonate // J. Plant. Physiol. 2013. V. 170. P. 211. https://doi.org/10.1016/j.jplph.2012.09.004
  50. Furmanowa M., Oledzka H., Syklowska-Baranek K., Jozefowicz J., Gieracka S. Increased taxane accumulation in callus cultures of Taxus cuspidata and Taxus × media by some elicitors and precursors // Biotechnol. Letters. 2000. V. 22. P. 1449. https://doi.org/10.1023/A:1005611114628
  51. Amirkavei Najafabadi B., Qavami N., Ebrahimi M.A., Ebrahimi P., Zarinpanjeh N. Enhancement of taxol production by applying amino acid complex along with chitosan in suspension culture of Taxus baccata L. // J. Med. Plants. 2020. V. 19. P. 99. https://doi.org/10.29252/jmp.19.76.99
  52. Vidal-Limon H.R., Almagro L., Moyano E., Palazon J., Pedreno M.A., Cusido R.M. Perfluorodecalins and hexenol as inducers of secondary metabolism in Taxus media and Vitis vinifera cell cultures // Front. Plant Sci. 2018. V. 9. P. 335. https://doi.org/10.3389/fpls.2018.00335
  53. Barrales-Cureno H.J., Ramos Valdivia A.C., Soto Hernandez M. Increased production of taxoids in suspension cultures of Taxus globosa after elicitation // Future Pharm. 2022. V. 2. P. 45. https://doi.org/10.3390/futurepharmacol2010004
  54. Veeresham C., Mamatha R., Prasad Babu Ch., Srisilam K., Kokate C.K. Production of taxol and its analogues from cell cultures of Taxus wallichiana // Pharm. Biol. 2003. V. 41. P. 426. https://doi.org/10.1076/phbi.41.6.426.17822
  55. Mirjalili N., Linden J.C. Gas phase composition effects on suspension of Taxus cuspidata // Biotechnol Bioeng. 1995. V. 48. P. 123. https://doi.org/10.1002/bit.260480206
  56. Linden J., Haigh J.R., Mirjalili N., Phisaphalong M. Gas concentration effects on secondary metabolite production by plant cell cultures // Adv. Biochem. Eng. Biotechnol. 2001. V. 72. P. 27. https://doi.org/10.1007/3-540-45302-4_2
  57. Kim S.I., Choi H.K., Kim J.H., Lee H.S., Hong S.S. Effect of osmotic pressure on paclitaxel production in suspension cell cultures of Taxus chinensis // Enzym. Microb. Technol. 2001. V. 28. P. 202. https://doi.org/10.1016/s0141-0229(00)00292-1
  58. Choi H., Kim S., Son J., Hong S., Lee H., Lee H. Enhancement of paclitaxel production by temperature shift in suspension culture of Taxus chinensis // Enzyme Microb. Technol. 2000. V. 27. P. 593. https://doi.org/10.1016/s0141-0229(00)00255-6
  59. Zhong J.J., Yue C.J. Plant cells: secondary metabolite heterogeneity and its manipulation // Adv. Biochem. Eng. Biotechnol. 2005. V. 100. P. 53. https://doi.org/10.1007/b136412

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (112KB)
3.

Download (1MB)
4.

Download (1022KB)

Copyright (c) 2023 С.В. Томилова, Е.Б. Глоба, Е.В. Демидова, А.М. Носов

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies