In Vitro Regeneration of Fern via Green Globular Bodies

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Green globular bodies (GGB) are special shoots—propagules formed during the in vitro cultivation of plant tissues. Due to the high propagation rate, GGB are considered cost-effective for in vitro regeneration of important food and ornamental ferns. In addition, propagation using these meristem structures
offer the challenge for the conservation of rare or endangered ferns. GGB tissues can be used for long-term storage by in vitro cell culture cryopreservation. The review presents the current state of research on the in vitro reproduction of ferns via GGB regeneration. The concept of GGB and the stages of their development are discussed. Conditions for GGB in vitro introduction into culture, their initiation, proliferation, differentiation, rooting and acclimatization of sporophytes are discussed. Particular attention is paid to the effect of the composition of nutrient media on the GGB multiplication efficiency.

About the authors

L. A. Shelikhan

Amur Branch, Botanical Garden-Institute, Far East Branch, Russian Academy of Sciences

Author for correspondence.
Email: solecito91@mail.ru
Russian Federation, Blagoveshchensk

References

  1. Rahayu E.M.D., Isnaini Y., Prartosuwiryo T.N. Induction of sporophyte formation on prothallus mass of the golden chicken fern (Cibotium barometz) in vitro // Pros. Sem. Nas. Masy. Biodiv. Indon. 2015. V. 1. P. 814. https://doi.org/10.13057/psnmbi/m010425
  2. Ballesteros D., Pence V.C. Fern conservation: spore, gametophyte, and sporophyte ex situ storage, in vitro culture, and cryopreservation // Current Advances in Fern Research. 2018. P. 227. https://doi.org/10.1007/978-3-319-75103-0_11
  3. Шелихан Л.А., Некрасов Э.В. Размножение папоротников посредством спор в культуре in vitro (обзор литературы) // Бюллетень Ботанического сада-института ДВО РАН. 2018. Вып. 20. С. 23. https://doi.org/10.17581/bbgi2003
  4. Adebiyi A.O., Oyeyemi S.D., Tedela P.O., Ojo V.I. G-C-MS analysis of bioactive compounds from n-hexane leaf extract of a tropical fern, Nephrolepis cordifolia (L) C. Presl. // EAS J. Biotechnol. Genet. 2019. V. 1. P. 118. https://www.easpublisher.com/media/features_ articles/EASJBG_15_118-123.pdf
  5. Chettri U., Kumari S., Chettri B. A review on anti-microbial and hepatoprotective properties of himalayan wild fern Nephrolepis cordifolia (Pani Amla) // Pharma Innovation. 2020. V. 9. P. 572.
  6. Ma L.Q., Komar K.M., Tu C., Zhang W.H., Cai Y., Kennelly E.D. A fern that hyperaccumulates arsenic // Nature. 2001. V. 409. P. 579. https://doi.org/10.1038/35054664
  7. Zhao F.J., Dunham S.J., McGrath S.P. Arsenic hyperaccumulation by different fern species // New Phytol. 2002. V. 156. P. 27. https://doi.org/10.1046/j.1469-8137.2002.00493.x
  8. Trotta A., Mantovani M., Fusconi A., Gallo C. In vitro culture of Pteris vittata, an arsenic hyperaccumulating fern, for screening and propagating strains useful for phytoremediation // Caryologia. 2007. V. 60. P. 160. https://doi.org/10.1080/00087114.2007.10589566
  9. Малюта О.В., Гончаров Е.А. Биоиндикация в условиях радиоактивного загрязнения // Вестник МарГТУ. 2008. № 1.С. 80.
  10. Hansa J., Chakraborty B., Laskar B.A., Behera S.K., Patel A.K. Pteris vittata propagation through different exposure of chromium concentration: an experiment to comprehend phytoremediation properties // Adv. Biores. 2013. V. 4. P. 43.
  11. Красная книга Российской Федерации (растения и грибы). МПР РФ; Росприроднадзор; РБО; МГУ им. М.В. Ломоносова. Москва: Т-во науч. изд. КМК, 2008. с. 855. http://oopt.aari.ru/ref/38
  12. Красная книга Амурской области: редкие и находящиеся под угрозой исчезновения виды животных, растений и грибов. 2-е изд. Благовещенск: Изд-во ДальГАУ, 2020. 499 с. http://www.amurohota.ru/files/RedBookAmur2020.pdf
  13. Higuchi H., Amaki W., Suzuki S. In vitro propagation of Nephrolepis cordifolia Prsel. // Sci. Hortic. 1987. V. 32. P. 105. https://doi.org/10.1016/0304-4238(87)90021-5
  14. Wang Z., Sun L., Wu C., Shi Y. Study on GGB tissue culture domestication technology and transplanting acclimatization in Pteridium aquilinum L. Kuhn // Rain Fed Crops. 2016. Is.1. P. 27.
  15. http://caod.oriprobe.com/articles/48966325/Study_on_ GGB_Tissue_Culture_Domestication_Technology_and_ Transplanting.htm
  16. Higuchi H. Amaki W. Effects of 6-benzylaminopurine on the organogenesis of Asplenium nidus L. through in vitro propagation // Sci. Hortic. 1989. V. 37. 351. https://doi.org/10.1016/0304-4238(89)90146-5
  17. Amaki W., Higuchi H. A possible propagation system of Nephrolepis, Asplenium, Pteris, Adiantum and Rumohra (Arachniodes) through tissue culture // Acta Hortic. 1992. V. 300. P. 237. https://doi.org/10.17660/ActaHortic.1992.300.33
  18. Liao Y.K., Wu Y.H. In vitro propagation of Platycerium bifurcatum (Cav.) C. Chr. via green globular body initiation // Bot. Stud. 2011. V. 52. P. 455.
  19. Johari D., Singh A.P. Biotechnology in clone gametophytes: future perspectives in homosporous ferns // Current Advances in Fern Research. 2018. P. 75. https://doi.org/10.1007/978-3-319-75103-0_4
  20. Rybczynski J.J., Tomiczak K., Grzyb M., Mikula A. Morphogenic events in ferns: single and multicellular explants in vitro // Current Advances in Fern Research. 2018. P. 99. https://doi.org/10.1007/978-3-319-75103-0_5
  21. Shin S.L., Lee C.H. Medium composition affecting in vitro plant regeneration and acclimation of Pteris cretica ‘Wilsonii’ // Korean J. Plant Res. 2009. V. 22. P. 394. https://www.researchgate.net/publication/264032686_ Medium_Composition_Affecting_In_Vitro_Plant_ Regeneration_and_Acclimation_of_Pteris_cretica_ 'Wilsonii'
  22. Camloh M., Gogala N., Rode J. Plant regeneration from leaf explants of the fern Platycerium bifurcatum in vitro // Sci. Hortic. 1994. V. 56. P. 257. https://doi.org/10.1016/0304-4238(94)90007-8
  23. Thakur R.C., Hosoi Y., Ishii K. Rapid in vitro propagation of Matteuccia struthiopteris (L.) Todaro – an edible fern // Plant Cell Rep. 1998. V. 18. P. 203. https://doi.org/10.1007/s002990050557
  24. Hagiabad M.S., Hamidoghli Y., Gazvini R.F. Effects of different concentrations of mineral salt, sucrose and benzyladenine on Boston fern (Neprolepis exaltata Schott cv. Bostoniensis) runner tips initiation // J. W. S. S.-Isf. Univ. Technol. 2007. V. 11. P. 137.
  25. Yu R., Li F., Wang G., Ruan J., Wu L., Wu M., Yang C., Shan Q. In vitro regeneration of the colorful fern Pteris aspericaulis var. tricolor via green globular bodies system // In Vitro Cell. Dev. Biol. Plant. 2021. V. 57. P. 225. https://doi.org/10.1007/s11627-020-10059-y
  26. Yu R., Zhang G., Li H., Cao H., Mo X., Gui M., Zhou X., Jiang Y., Li S., Wang J. In vitro propagation of the endangered tree fern Cibotium barometz through formation of green globular bodies // Plant Cell, Tissue Organ Cult. 2017. V. 128. P. 369. https://doi.org/10.1007/s11240-016-1116-0
  27. Шелихан Л.А. Влияние различных концентраций сахарозы на формирование зеленых глобулярных тел (GGB) у Polystichum craspedosorum (Maxim.) Diels in vitro // Труды Международной научной конференции, посвященной 140-летию Сибирского ботанического сада Томского государственного университета “Ботанические сады как центры изучения и сохранения фиторазнообразия”. Томск. 2020. С. 210. https://doi.org/10.17223/978-5-94621-956-3-2020-67
  28. Mosonyi I.D., Tilly-Mandy A., Stefanovits-Banyai E. Growing Spathiphyllum in vitro: evaluation of some combinations of carbohydrate sources and minerals in the media regarding peroxidase enzyme activity and chlorophyll content // Acta Hortic. 2012. V. 961. P. 279. https://doi.org/10.17660/ActaHortic.2012.961.36
  29. Tzatzani T.T., Dimassi-Theriou K., Yupsanis T., Bosabalidis A., Therios I., Sarropoulou V. Globular body production, their anatomy, DNase gel analysis and NDP kinase activity in root tips of Poncirus trifoliata L. // Plant Physiol. Biochem. 2013. V. 71. P. 247. https://doi.org/10.1016/j.plaphy.2013.07.023
  30. Wu Q., Zhang C., Yang H., Hu J., Zou L. In vitro propagation via organogenesis and formation of globular bodies of Salvia plebeia: a valuable medicinal plant // In Vitro Cell. Dev. Biol. Plant. 2022. V. 58. P. 51. https://doi.org/10.1007/s11627-021-10223-y
  31. Zhang G., Su W. In vitro rapid propagation from young leaf of Sinephropteris delavayi (Franch.) Mickel. // J. Yunnan Univ. Nat. Sci. 2002. V. 24. P. 234. http://www. yndxxb.ynu.edu.cn/yndxxbzrkxb/article/id/1328
  32. Amaki W., Kadokura S. Micropropagation of Diplazium nipponicum // Proc. of the International Plant Propagators Society. 2009. V. 59. P. 123.
  33. Chan-Sanchez T.J., Villanueva-Couoh E., Pinzon-Lopez L., Cristobal-Alejo J. Micropropagation of Nephrolepis exaltata (L.) Schott. // XVII Congreso Nacional de Biotecnologia y Bioingenieria. Cancun, Mexico. 2013. https:// smbb.mx/congresos%20smbb/cancun13/TRABAJOS/ SMBB/BiotecnologiaAgricolaVegetal/II-O19.pdf
  34. Li X., Fang Y.H., Han J.D., Bai S.N., Rao G.Y. Isolation and characterization of a novel somatic embryogenesis receptor kinase gene expressed in the fern Adiantum capillus-veneris during shoot regeneration in vitro // Plant Mol. Biol. Rep. 2015. V. 33. P. 638. https://doi.org/10.1007/s11105-014-0769-2
  35. Li X., Han J.D., Fang Y.H., Bai S.N., Rao G.Y. Expression analyses of embryogenesis-associated genes during somatic embryogenesis of Adiantum capillus-veneris L. in vitro: new insights into the evolution of reproductive organs in land plants // Front. Plant Sci. 2017. V. 8. P. 658. https://doi.org/10.3389/fpls.2017.00658
  36. Fernandez H., Bertrand A.M., Sachez-Tames R. Micropropagation and phase change in Blechnum spicant and Pteris ensiformis // Plant Cell, Tissue Organ Cult. 1996. V. 44. P. 261. https://doi.org/10.1007/BF00048534
  37. Kromer K., Raj A., Zolnierz L., Poturala D. Propagation in vitro and ex situ cultivation of Woodsia alpina (Bolton) // Club Mosses, Horsetails and Ferns in Poland – Resources and Protection / S.F. Gray. Polish Botanical Society Institute of Plant Biology, University of Wroclaw. 2008. P. 15.
  38. Shin S.L., Cheol H.L. Effect of medium components and culture methods on shoots regeneration from Athyrium niponicum // Korean J. Plant Res. 2011. V. 24. P. 113. https://doi.org/10.7732/kjpr.2011.24.2.113
  39. Li T., Xu L., Li Z., Panis B. Cryopreservation of Neottopteris nidus prothallus and green globular bodies by droplet-vitrification // Cryo-Lett. 2013. V. 34. P. 481.
  40. Pence V.C. Propagation and cryopreservation of Asplenium scolopendrium var. americanum, the American hart’s-tongue fern // Am. Fern J. 2015. V. 105. P. 211. https://doi.org/10.1640/0002-8444-105.3.211
  41. Fernandez H., Bertrand M., Sachez-Tames R. Plantlet regeneration in Asplenium nidus L. and Pteris ensiformis L. by homogenization of BA treated rhizomes // Sci. Hortic. 1997. V.68. P. 243. https://doi.org/10.1016/S0304-4238(96)00986-7
  42. Bertrand A.M., Albuerne M.A., Fernandez H., Gonzalez A., Sanchez Tames R. In vitro organogenesis of Polypodium cambricum // Plant Cell, Tissue Organ Cult. 1999. V. 57. P. 65. https://doi.org/10.1023/A:1006348628114
  43. Prematilake D.P., Nanayakkara N.H.A.G.R., Hettiarachchi A. Rapid propagation of Nephrolepis fern via tissue culture of runner tips // Ann. Sri Lanka Depart. Agric. 2004. V. 6. P. 321. http://doa.nsf.ac.lk/handle/1/2077
  44. Liao Y.K., Cheng C.T. Using homogenized green globular body in tissue culture propagation of Platycerium willinckii T. Moore and Platycerium grande J. Sm. // Crop, Environ. Bioinf. 2018. V. 15. P. 169. https://doi.org/10.30061/CEB.201809_15(3).0003
  45. Murashige T., Skoog F. A revised medium for rapid growth and bioassays with tobacco tissue cultures // Physiol. Plant. 1962. V. 15. P. 473. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
  46. Raine C.A., Sheffield E. Establishment and maintenance of aseptic culture of Trichomanes speciosum gametophytes from gemmae // Am. Fern J. 1997. V. 87. P. 87. https://doi.org/10.2307/1547268
  47. Iuchi M., Goto A., Kawamura H. Micropropagation of Matteuccia struthiopteris (L.) Tod. through tissue culture, II: Induction of green globular bodies and regeneration of plantlets. // Tokushima Agric. Exp. Stat. Rep. (Japan). 1999. V. 35. P. 14.
  48. Yu R., Li Y., Li D., Zhan X., Shi L. Radiosensitivity of green globular bodies of Matteuccia struthiopteris exposed to 60Coγ radiation // Chin. Bull. Bot. 2015. V. 50. P. 565. https://doi.org/10.11983/CBB14141
  49. Wang D., Li Y., Li D., Shi L. Green globular body (GGB) induction and differentiation in the medicinal fern Drynaria roosii // BMC Plant Biology. 2021. https://doi.org/10.21203/rs.3.rs-409651/v1
  50. Yu R., Wang D., Li D., Zhan X., Shi L. Radiation breeding of Boston Fern via 60Coγ rays. // Acta Horrticulturae Sinica. 2018. V. 45. P. 988.
  51. https://www.ahs.ac.cn/EN/Y2018/V45/I5/988

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (2MB)

Copyright (c) 2023 Л.А. Шелихан

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies