Regulation of Pro-/Antioxidant Balance in Higher Plants by Nanoparticles of Metals and Metal Oxides

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

A comparative analysis of available data suggests that metal and metal oxide nanoparticles widely used in plant physiology participate in the regulation of pro-/antioxidant balance in higher plants. The dual role of nanoparticles is shown: on the one hand, they act as triggers of oxidative stress and, on the other hand, they can counteract stress development and improve the efficiency of the plant’s antioxidant system. Under abiotic stress conditions, nanoparticles can act as adaptogens, thus enhancing the antioxidant defense of plants. Possible mechanisms of nanoparticle action, as well as the prospects for their application in fundamental science and agriculture are discussed.

About the authors

Yu. V. Venzhik

Timiryazev Institute of Plant Physiology, Russian Academy of Sciences

Author for correspondence.
Email: jul.venzhik@gmail.com
Russian Federation, Moscow

A. N. Deryabin

Timiryazev Institute of Plant Physiology, Russian Academy of Sciences

Email: jul.venzhik@gmail.com
Russian Federation, Moscow

References

  1. Kolupaev Y.E., Karpets Y.V., Kabashnikova L.F. Antioxidative system of plants: cellular compartmentalization, protective and signaling functions, mechanisms of regulation (review) // Appl. Biochem. Microbiol. 2019. V. 55. P. 441. https://doi.org/10.1134/S0003683819050089
  2. Kerchev P.I., Van Breusegem F. Improving oxidative stress resilience in plants // Plant J. 2022. V. 109. P. 359. https://doi.org/10.1111/tpj.15493
  3. Swanson S., Gilroy S. ROS in plant development // Physiol. Plant. 2010. V. 138. P. 384. https://doi.org/10.1111/j.1399-3054.2009.01313.x
  4. Kreslavski V.D., Los D.A., Allakhverdiev S.I., Kuznetsov V.V. Signaling role of reactive oxygen species in plants under stress // Russ. J. Plant Physiol. 2012. V. 59. P. 141. https://doi.org/10.1134/S1021443712020057
  5. Demidchik V. Mechanisms of oxidative stress in plants: from classical chemistry to cell biology // Environ. Exp. Bot. 2015. V. 109. P. 212. https://doi.org/10.1016/j.envexpbot.2014.06.021
  6. Noctor G., Lelarge-Trouverie C., Mhamdi A. The metabolomics of oxidative stress // Phytochem. 2015. V. 112. P. 33. https://doi.org/10.1016/j.phytochem.2014.09.002
  7. Sanzari I., Leone A., Ambrosone A. Nanotechnology in plant science: to make a long story short // Front. Bioeng. Biotechnol. 2019. V. 7. P. 120. https://doi.org/10.3389/fbioe.2019.00120
  8. Solano R., Patico-Ruiz D., Tejeda-Benitez L., Herrera A. Metal- and metal/oxide-based engineered nanoparticles and nanostructures: a review on the applications, nanotoxicological effects, and risk control strategies // Environ. Sci. Poll. Res. 2021. V. 28. P. 16962. https://doi.org/10.1007/s11356-021-12996-6
  9. Goswami P., Yadav S., Mathur J. Positive and negative effects of nanoparticles on plants and their applications in agriculture // Plant Sci. Today. 2019. V. 6. P. 232. https://doi.org/10.14719/pst.2019.6.2.502
  10. Chen H. Metal based nanoparticles in agricultural system: behavior, transport, and interaction with plants // Chem. Spec. Bioavailab. 2018. V. 30. P. 123. https://doi.org/10.1080/09542299.2018.1520050
  11. Venzhik Yu.V., Moshkov I.E., Dykman L.A. Influence of nanoparticles of metals and their oxides on the photosynthetic apparatus of plants // Biol. Bull. 2021a. V. 48. P. 140. https://doi.org/10.1134/S106235902102014X
  12. Venzhik Yu.V., Moshkov I.E., Dykman L.A. Gold nanoparticles in plant physiology: principal effects and prospects of application // Russ. J. Plant Physiol. 2021b. V. 68. P. 401. https://doi.org/10.1134/S1021443721020205
  13. Hu P., An J., Faulkner M.M., Wu H., Li Z., Tian X., Giraldo J.P. Nanoparticle charge and size control foliar delivery efficiency to plant cells and organelles // ACS Nano. 2020. V. 14. P. 7970. https://doi.org/10.1021/acsnano.9b09178
  14. Liu Y., Xiao Z., Chen F., Yue L., Zou H., Lyu J., Wang Z. Metallic oxide nanomaterials act as antioxidant nanozymes in higher plants: trends, meta-analysis, and prospect // Sci. Total. Environ. 2021. V. 780. P. 146578. https://doi.org/10.1016/j.scitotenv.2021.146578
  15. Panda K.K., Achary V.M., Krishnaveni R., Padhi B.K., Sarangi S.N., Sahu S.N., Panda B.B. In vitro biosynthesis and genotoxicity bioassay of silver nanoparticles using plants // Toxicol. In Vitro. 2011. V. 25. P. 1097. https://doi.org/10.1016/j.tiv.2011.03.008
  16. Oukarroum A., Barhoumi L., Pirastru L., Dewez D. Silver nanoparticle toxicity effect on growth and cellular viability of the aquatic plant Lemna gibba // Environ. Toxicol. Chem. 2013. V. 32. P. 902. https://doi.org/10.1002/etc.2131
  17. Jiang H.-Sh., Qiu X.-N., Li G.-B., Li W., Yin L.-Y. Silver nanoparticles induced accumulation of reactive oxygen species and alteration of antioxidant systems in the aquatic plant Spirodela polyrhiza // Environ. Toxicol. Chem. 2014. V. 33. P. 1398. https://doi.org/10.1002/etc.2577
  18. Nair P.M.G., Chung I.M. Physiological and molecular level effects of silver nanoparticles exposure in rice (Oryza sativa L.) seedlings // Chemosphere. 2014a. V. 112. P. 105. https://doi.org/10.1016/j.chemosphere.2014.03.056
  19. Bagherzadeh Homaee M., Ehsanpour A.A. Silver nanoparticles and silver ions: oxidative stress responses and toxicity in potato (Solanum tuberosum L) grown in vitro // Hortic. Environ. Biotechnol. 2016. V. 57. P. 544. https://doi.org/10.1007/s13580-016-0083-z
  20. Sosan A., Svistunenko D., Straltsova D., Tsiurkina K., Smolich I., Lawson T., Subramaniam S., Golovko V., Anderson D., Sokolik A., Colbeck I., Demidchik V. Engineered silver nanoparticles are sensed at the plasma membrane and dramatically modify the physiology of Arabidopsis thaliana plants // Plant J. 2016. V. 85. P. 245. https://doi.org/10.1111/tpj.13105
  21. Mohamed A.K.S.H., Qayyum M.F., Abdel-Hadi Ah.M., Rehman R.A., Ali Sh., Rizwan M. Interactive effect of salinity and silver nanoparticles on photosynthetic and biochemical parameters of wheat // Arch. Agron. Soil Sci. 2017. V. 63. P. 1736. https://doi.org/10.1080/03650340.2017.1300256
  22. Arora S., Sharma P., Kumar S., Nayan R., Khanna P.K., Zaidi M.G.H. Gold-nanoparticle induced enhancement in growth and seed yield of Brassica juncea // Plant Growth Regul. 2012. V. 66. P. 303. https://doi.org/10.1007/s10725-011-9649-z
  23. Gunjan B., Zaidi M.G.H., Sandeep A. Impact of gold nanoparticles on physiological and biochemical characteristics of Brassica juncea // J. Plant Biochem. Physiol. 2014. V. 2. P. 3. https://doi.org/10.4172/2329-9029.1000133
  24. Wan Y., Li J., Ren H., Huang J., Yuan H. Physiological investigation of gold nanorods toward watermelon // J. Nanosci. Nanotechnol. 2014. V. 14. P. 6089. https://doi.org/10.1166/jnn.2014.8853
  25. Rajeshwari A., Suresh S., Chandrasekaran N., Mukherjee A. Toxicity evaluation of gold nanoparticles using an Allium cepa bioassay // RSC Adv. 2016. V. 6. P. 24000. https://doi.org/10.1039/c6ra04712b
  26. Ndeh N.T., Maensiri S., Maensiri D. The effect of green synthesized gold nanoparticles on rice germination and roots // Adv. Nat. Sci.: Nanosci. Nanotechnol. 2017. V. 8. P. 035008. https://doi.org/10.1088/2043-6254/aa724a
  27. Zhao L., Peng B., Hernandez-Viezcas J.A., Rico C., Sun Y., Peralta-Videa J.R., Tang X., Niu G., Jin L., Varela-Ramirez A., Zhang J.Y. Stress response and tolerance of Zea mays to CeO2 nanoparticles: cross talk among H2O2, heat shock protein, and lipid peroxidation // ACS Nano. 2012. V. 6. P. 9615. https://doi.org/10.1021/nn302975u
  28. Ma C.X., Chhikara S., Xing B.S., Musante C., White J.C., Dhankher O.P. Physiological and molecular response of Arabidopsis thaliana (L.) to nanoparticle cerium and indium oxide exposure // ACS Sustainable Chem. Eng. 2013. V. 1. P. 768. https://doi.org/10.1021/sc400098h
  29. Rico C.M., Morales M.I., Barrios A.C., McCreary R., Hong J., Lee W.Y., Nunez J., Peralta-Videa J.R., Gardea-Torresdey J.L. Effect of cerium oxide nanoparticles on the quality of rice (Oryza sativa L.) grains // J. Agric. Food Chem. 2013. V. 61. P. 11278. https://doi.org/10.1021/jf404046v
  30. Ma X., Wang Q., Rossi L., Zhang W. Cerium oxide nanoparticles and bulk cerium oxide leading to different physiological and biochemical responses in Brassica rapa // Environ. Sci. Technol. 2015. V. 50. P. 6793. https://doi.org/10.1021/acs.est.5b04111
  31. Nekrasova G.F., Ushakova O.S., Ermakov A.E., Uimin M.A., Byzov I.V. Effects of copper(II) ions and copper oxide nanoparticles on Elodea densa Planch. // Russ. J. Ecol. 2011. V. 42. P. 458. https://doi.org/10.1134/S1067413611060117
  32. Dimkpa C.O., McLean J.E., Latta D.E., Manangón E., Britt D.W., Johnson W.P., Boyanov M.I., Anderson A.J. CuO and ZnO nanoparticles: phytotoxicity, metal speciation, and induction of oxidative stress in sand-grown wheat // J. Nanopart. Res. 2012. V. 14. P. 1. https://doi.org/10.1007/s11051-012-1125-9
  33. Shaw A.K., Hossain Z. Impact of nano-CuO stress on rice (Oryza sativa L.) seedlings // Chemosphere. 2013. V. 93. P. 906. https://doi.org/10.1016/j.chemosphere.2013.05.044
  34. Nair P.M.G., Chung I.M. Impact of copper oxide nanoparticles exposure on Arabidopsis thaliana growth, root system development, root lignification, and molecular level changes // Environ. Sci. Pollut. Res. 2014b. V. 21. P. 12709. https://doi.org/10.1007/s11356-014-3210-3
  35. Nair P.M.G., Kim S.H., Chung I.M. Copper oxide nanoparticle toxicity in mung bean (Vigna radiata L.) seedlings: physiological and molecular level responses of in vitro grown plants // Acta Physiol. Plant. 2014. V. 36. P. 2947. https://doi.org/10.1007/s11738-014-1667-9
  36. Da Costa M.V.J., Sharma P.K. Effect of copper oxide nanoparticles on growth, morphology, photosynthesis, and antioxidant response in Oryza sativa // Photosynthetica. 2016. V. 54. P. 110.
  37. Asadi-Kavan Z., Khavari-Nejad R.A., Iranbakhsh A., Najafi F. Cooperative effects of iron oxide nanoparticle (α-Fe2O3) and citrate on germination and oxidative system of evening primrose (Oenthera biennis L.) // J. Plant Interact. 2020. V. 15. P. 166. https://doi.org/10.1080/17429145.2020.1774671
  38. Castiglione M.R., Giorgetti L., Cremonini R., Bottega S., Spanò C. Impact of TiO2 nanoparticles on Vicia narbonensis L.: potential toxicity effects // Protoplasma. 2014. V. 251. P. 1471. https://doi.org/10.1007/s00709-014-0649-5
  39. Mukherjee A., Peralta-Videa J.R., Bandyopadhyay S., Rico C.M., Zhao L., Gardea-Torresdey J.L. Physiological effects of nanoparticulate ZnO in green peas (Pisum sativum L.) cultivated in soil // Metallomics. 2014. V. 6. P. 132. https://doi.org/10.1039/c3mt00064h
  40. Wang P., Lombi E., Zhao F.-J., Kopittke P.M. Nanotechnology: a new opportunity in plant sciences // Trends Plant Sci. 2016. V. 21. P. 699. https://doi.org/10.1016/j.tplants.2016.04.005
  41. Hussain A., Ali S., Rizwan M., ur Rehman M.Z., Javed M.R., Imran M., Chatha S.A., Nazir R. Zinc oxide nanoparticles alter the wheat physiological response and reduce the cadmium uptake by plants // Environ. Pollut. 2018. V. 242. P. 1518. https://doi.org/10.1016/j.envpol.2018.08.036
  42. Akanbi-Gada M.A., Ogunkunle Clement O., Vishwakarma V., Viswanathan K., Fatoba P.O. Phytotoxicity of nano-zinc oxide to tomato plant (Solanum lycopersicum L.): Zn uptake, stress enzymes response and influence on non-enzymatic antioxidants in fruits // Environ. Technol. Innov. 2019. V. 14. P. 100325. https://doi.org/10.1016/j.eti.2019.100325
  43. Khoshgoftarmanesh A.H., Markarian Sh. Antioxidant response of wheat to tire rubber ash and ZnO nanoparticles and ionic zinc exposure in nutrient solution culture // Acta Physiol. Plant. 2022. V. 44. P. 50. https://doi.org/10.1007/s11738-022-03384-9
  44. Ma X., Quah B. Effects of surface charge on the fate and phytotoxicity of gold nanoparticles to Phaseolus vulgaris // J. Food Chem. Nanotechnol. 2016. V. 2. P. 57. https://doi.org/10.17756/jfcn.2016-011
  45. Ferrari E., Barbero F., Busquets-Fité M., Franz-Wachtel M., Köhler H.-R., Puntes V., Kemmerling B. Growth-promoting gold nanoparticles decrease stress responses in Arabidopsis seedlings // Nanomaterials. 2021. V. 11. P. 3161. https://doi.org/10.3390/nano11123161
  46. Song U., Jun H., Waldman B., Roh J., Kim Y., Yi J., Lee E.J. Functional analyses of nanoparticle toxicity: a comparative study of the effects of TiO2 and Ag on tomatoes (Lycopersicon esculentum) // Ecotoxicol. Environ. Safe. 2013. V. 93. P. 60. https://doi.org/10.1016/j.ecoenv.2013.03.033
  47. Dutta Gupta S., Agarwal A., Pradhan S. Phytostimulatory effect of silver nanoparticles (AgNPs) on rice seedling growth: an insight from antioxidative enzyme activities and gene expression patterns // Ecotox. Environ. Saf. 2018. V. 161. P. 624. https://doi.org/10.1016/j.ecoenv.2018.06.023
  48. Kumar V., Guleria P., Kumar V., Yadav S.K. Gold nanoparticle exposure induces growth and yield enhancement in Arabidopsis thaliana // Sci. Total Environ. 2013. V. 461. P. 462. https://doi.org/10.1016/j.scitotenv.2013.05.018
  49. Du W., Gardea-Torresdey J.L., Ji R., Yin Y., Zhu J., Peralta-Videa J.R., Guo H. Physiological and biochemical changes imposed by CeO2 nanoparticles on wheat: a life cycle field study // Environ. Sci. Technol. 2015. V. 49. P. 11884. https://doi.org/10.1021/acs.est.5b03055
  50. Laware S.L., Raskar Sh. Effect of titanium dioxide nanoparticles on hydrolytic and antioxidant enzymes during seed germination in onion // Int. J. Curr. Microbiol. App. Sci. 2014. V. 3. P. 749.
  51. Mohammadi R., Maali-Amiri R., Mantri N. Effect of TiO2 nanoparticles on oxidative damage and antioxidant defense systems in chickpea seedlings during cold stress // Russ. J. Plant Physiol. 2014. V. 61. P. 768. https://doi.org/10.1134/S1021443714050124
  52. Lian J., Zhao L., Wu J., Xiong H., Bao Y., Zeb A., Tang J., Liu W. Foliar spray of TiO2 nanoparticles prevails over root application in reducing Cd accumulation and mitigating Cd-induced phytotoxicity in maize (Zea mays L.) // Chemosphere. 2020. V. 239. P. 124794. https://doi.org/10.1016/j.chemosphere.2019.124794
  53. Lee S., Kim S., Kim S., Lee I. Assessment of phytotoxicity of ZnO NPs on a medicinal plant, Fagopyrum esculentum // Environ. Sci. Poll. Res. 2013. V. 20. P. 848. https://doi.org/10.1007/s11356-012-1069-8
  54. Rostami M., Talarposhti R.M., Mohammadi H., Demyan M.S. Morpho-physiological response of Saffron (Crocus sativus L.) to particle size and rates of zinc fertilizer // Commun. Soil Sci. Plant Anal. 2019. V. 50. P. 1250. https://doi.org/10.1080/00103624.2019.1614602
  55. Adrees M., Khan Z.S., Hafeez M., Rizwan M., Hussain K., Asrar M., Alyemeni M.N., Wijaya L., Ali S. Foliar exposure of zinc oxide nanoparticles improved the growth of wheat (Triticum aestivum L.) and decreased cadmium concentration in grains under simultaneous Cd and water deficient stress // Ecotoxicol. Environ. Saf. 2021. V. 208. P. 111627. https://doi.org/10.1016/j.ecoenv.2020.111627
  56. Vishwakarma K., Upadhyay N., Singh J., Liu S., Singh V.P., Prasad S.M., Chauhan D.K., Tripathi D.K., Sharma S. Differential phytotoxic impact of plant mediated silver nanoparticles (AgNPs) and silver nitrate (AgNO3) on Brassica sp // Front. Plant Sci. 2017. V. 8. P. 1501. https://doi.org/10.3389/fpls.2017.01501
  57. Kreslavski V., Ivanov A., Shmarev A., Khudyakova A., Kosobryukhov A. Influence of iron nanoparticles (Fe3O4 and Fe2O3) on the growth, photosynthesis and antioxidant balance of wheat plants (Triticum aestivum) // BIO Web of Conferences. 2022. V. 42: 01023. https://doi.org/10.1051/bioconf/20224201023
  58. Qian H., Peng X., Han X., Ren J. Comparison of the toxicity of silver nanoparticles and silver ions on the growth of terrestrial plant model Arabidopsis thaliana // J. Environ. Sci. 2013. V. 25. P. 1947. https://doi.org/10.1016/S1001-0742(12)60301-5
  59. Liwei Sun., Zhengwei FuKatiyar P., Yadu B., Korram J., Satnami M.L., Kumar M., Keshavkant S. Titanium nanoparticles attenuates arsenic toxicity by up-regulating expressions of defensive genes in Vigna radiata L. // J. Environ. Sci. 2020 V. 92. P. 18. https://doi.org/10.1016/j.jes.2020.02.013
  60. Mohammadi R., Maali-Amiri R., Abbasi A. Effect of TiO2 nanoparticles on chickpea response to cold stress // Biol. Trace Elem. Res. 2013. V. 152. P. 403. https://doi.org/10.1007/s12011-013-9631-x
  61. Song Y., Jiang M., Zhang H., Li R. Zinc oxide nanoparticles alleviate chilling stress in rice (Oryza sativa L.) by regulating antioxidative system and chilling response transcription factors // Molecules. 2021. V. 26. P. 2196. https://doi.org/10.3390/molecules26082196
  62. Wahid I., Kumari S., Ahmad R., Hussain S.J., Alamri S., Siddiqui M.H., Khan M.I. Silver nanoparticle regulates salt tolerance in wheat through changes in ABA concentration, ion homeostasis, and defense systems // Biomolecules. 2020. V. 10. P. 1506. https://doi.org/10.3390/biom10111506
  63. Askary M., Talebi S.M., Amini F., Bangan A.D. Effects of iron nanoparticles on Mentha piperita L. under salinity stress // Biologija. 2017. V. 63. P. 65. https://doi.org/10.6001/biologija.v63i1.3476
  64. Moradbeygi H., Jamei R., Heidari R., Darvishzadeh R. Investigating the enzymatic and non-enzymatic antioxidant defense by applying iron oxide nanoparticles in Dracocephalum moldavica L. plant under salinity stress // Sci. Hortic. 2020. V. 272. P. 109537. https://doi.org/10.1016/j.scienta.2020.109537
  65. Gohari G., Mohammadi A., Akbari A., Panahirad S., Dadpour M.R., Fotopoulos V., Kimura S. Titanium dioxide nanoparticles (TiO2 NPs) promote growth and ameliorate salinity stress effects on essential oil profile and biochemical attributes of Dracocephalum moldavica // Sci. Rep. 2020. V. 10. P. 1. https://doi.org/10.1038/s41598-020-57794-1
  66. Shah T., Latif S., Saeed F., Ali I., Ullah S., Alsahli A.A., Jan S., Ahmad P. Seed priming with titanium dioxide nanoparticles enhances seed vigor, leaf water status, and antioxidant enzyme activities in maize (Zea mays L.) under salinity stress // J. King Saud Univer. Sci. 2021. V. 33. P. 101207. https://doi.org/10.1016/j.jksus.2020.10.004
  67. Abdel Latef A.A., Abu Alhmad M.F., Abdelfattah K.E. The possible roles of priming with ZnO nanoparticles in mitigation of salinity stress in lupine (Lupinus termis) plants // J. Plant Growth Regul. 2017. V. 36. P. 60. https://doi.org/10.1007/s00344-016-9618-x
  68. Alabdallah N.M., Alzahrani H.S. The potential mitigation effect of ZnO nanoparticles on (Abelmoschus esculentus L. Moench) metabolism under salt stress conditions // Saudi J. Biol. Sci. 2020. V. 27. P. 3132. https://doi.org/10.1016/j.sjbs.2020.08.005
  69. Faizan M., Bhat J.A., Chen C., Alyemeni M.N., Wijaya L., Ahmad P., Yu F. Zinc oxide nanoparticles (ZnO-NPs) induce salt tolerance by improving the antioxidant system and photosynthetic machinery in tomato // Plant Physiol. Biochem. 2021. V. 161. P. 122. https://doi.org/10.1016/j.plaphy.2021.02.002
  70. Djanaguiraman M., Nair R., Giraldo J.P., Vara Prasad P.V. Cerium oxide nanoparticles decrease drought-induced oxidative damage in sorghum leading to higher photosynthesis and grain yield // ACS Omega. 2018. V. 3. P. 14406. https://doi.org/10.1021/acsomega.8b01894
  71. Van Nguyen D., Nguyen H.M., Le N.T., Nguyen K.H., Nguyen H.T., Le H.M., Nguyen A.T., Dinh N.T., Hoang S.A., Van Ha C. Copper nanoparticle application enhances plant growth and grain yield in maize under drought stress conditions // J. Plant Growth Reg. 2022. V. 41. P. 364. https://doi.org/10.1101/2020.02.24.963132
  72. Mohasseli V., Farbood F., Moradi A. Antioxidant defense and metabolic responses of lemon balm (Melissa officinalis L.) to Fe-nano-particles under reduced irrigation regimes // Ind. Crops Prod. 2020. V. 149. P. 112338. https://doi.org/10.1016/j.indcrop.2020.112338
  73. Palmqvist N.M., Seisenbaeva G.A., Svedlindh P., Kessler V.G. Maghemite nanoparticles acts as nanozymes, improving growth and abiotic stress tolerance in Brassica napus // Nanoscale Res. Lett. 2017. V. 12. P. 631. https://doi.org/10.1186/s11671-017-2404-2
  74. Aghdam M.T., Mohammadi H., Ghorbanpour M. Effects of nanoparticulate anatase titanium dioxide on physiological and biochemical performance of Linum usitatissimum (Linaceae) under well-watered and drought stress conditions // Rev. Braz. Bot. 2016. V. 39. P. 139. https://doi.org/10.1007/s40415-015-0227-x
  75. Sun L., Song F., Guo J., Zhu X., Liu S., Liu F., Li X. Nano-ZnO-induced drought tolerance is associated with melatonin synthesis and metabolism in maize // Int. J. Mol. Sci. 2020. V. 21. P. 782. https://doi.org/10.3390/ijms21030782
  76. Dai Sh., Wang B., Song Y., Xie Zh., Li Ch., Li Sh., Huang Y., Jiang M. Astaxanthin and its gold nanoparticles mitigate cadmium toxicity in rice by inhibiting cadmium translocation and uptake // Sci. Total. Environ. 2021. V. 786. P. 147496. https://doi.org/10.1016/j.scitotenv.2021.147496
  77. Jiang M., Dai Sh., Wang B., Xie Zh., Li J., Wang L., Li Sh., Tan Yu., Tian B., Shu Q., Huang O. Gold nanoparticles synthesized using melatonin suppress cadmium uptake and alleviate its toxicity in rice // Environ. Sci. Nano. 2021. V. 8. P. 1042. https://doi.org/10.1039/d0en01172
  78. Mohammadi H., Amani-Ghadim A.R., Matin A.A., Ghorbanpour M. FeO nanoparticles improve physiological and antioxidative attributes of sunflower (Helianthus annuus) plants grown in soil spiked with hexavalent chromium // 3 Biotech. 2020. V. 10. P. 19. https://doi.org/10.1007/s13205-019-2002-3
  79. Bidi H., Fallah H., Niknejad Y., Tari D.B. Iron oxide nanoparticles alleviate arsenic phytotoxicity in rice by improving iron uptake, oxidative stress tolerance and diminishing arsenic accumulation // Plant Physiol. Biochem. 2021. V. 163. P. 348. https://doi.org/10.1016/j.plaphy.2021.04.020
  80. Manzoor N., Ahmed T., Noman M., Shahid M., Nazir M.M., Ali L., Alnusaire T.S., Li B., Schulin R., Wang G. Iron oxide nanoparticles ameliorated the cadmium and salinity stresses in wheat plants, facilitating photosynthetic pigments and restricting cadmium uptake // Sci. Total Environ. 2021. V. 769. P. 145221. https://doi.org/10.1016/j.scitotenv.2021.145221
  81. Ahmed T., Noman M., Manzoor N., Shahid M., Abdullah M., Ali L., Wang G., Hashem A., Al-Arjani A.B., Alqarawi A.A., Abd_Allah E.F., Li B. Nanoparticle-based amelioration of drought stress and cadmium toxicity in rice via triggering the stress responsive genetic mechanisms and nutrient acquisition // Ecotoxicol. Environ. Saf. 2021. V. 209. P. 111829. https://doi.org/10.1016/j.ecoenv.2020.111829
  82. Konate A., He X., Zhang Z., Ma Y., Zhang P., Alugongo G.M., Rui Y. Magnetic (Fe3O4) nanoparticles reduce heavy metals uptake and mitigate their toxicity in wheat seedling // Sustainability. 2017. V. 9. P. 790. https://doi.org/10.3390/su9050790
  83. Singh J., Lee B.K. Influence of nano-TiO2 particles on the bioaccumulation of Cd in soybean plants (Glycine max): a possible mechanism for the removal of Cd from the contaminated soil // J. Environ. Manage. 2016. V. 170. P. 88. https://doi.org/10.1016/j.jenvman.2016.01.015
  84. Rizwan M., Ali S., Ali B., Adrees M., Arshad M., Hussain A., ur Rehman M.Z., Waris A.A. Zinc and iron oxide nanoparticles improved the plant growth and reduced the oxidative stress and cadmium concentration in wheat // Chemosphere. 2019. V. 214. P. 269. https://doi.org/10.1016/j.chemosphere.2018.09.120
  85. Venkatachalam P., Jayaraj M., Manikandan R., Geetha N., Rene E.R., Sharma N.C., Sahi S.V. Zinc oxide nanoparticles (ZnONPs) alleviate heavy metal-induced toxicity in Leucaena leucocephala seedlings: a physiochemical analysis // Plant Physiol. Biochem. 2017. V. 110. P. 59. https://doi.org/10.1016/j.plaphy.2016.08.022
  86. Rizwan M., Ali Sh., Ali B., Adrees M., Arshad M., Hussain A., Zia ur Rehman M., Abdul Waris A. Zinc and iron oxide nanoparticles improved the plant growth and reduced the oxidative stress and cadmium concentration in wheat // Chemosphere. 2019. V. 214. P. 269. https://doi.org/10.1016/j.chemosphere.2018.09.120
  87. Zeeshan M., Hu Y.X., Siddique Afridi M., Ahmad B., Ahmad Sh., Muhammad Ih., Hale B., Iqbal A., Farooq S., Wu H.Y., Zhou X.B. Interplay of ZnONPs and/or SeNPs induces arsenic tolerance in soybean by regulation of antioxidants pool, WRKY genes, and expression of arsenic transporters // Environ. Exp. Bot. 2022. V. 195. P. 104783. https://doi.org/10.1016/j.envexpbot.2022.104783
  88. Ковалева Н.Ю., Раевская Е.Г., Рощин А.В. Проблемы безопасности наноматериалов: нанобезопасность, нанотоксикология, наноинформатика // Химическая безопасность. 2017. Т. 1. С. 44. https://doi.org/10.25514/CHS.2017.2.10982
  89. Khan M.R., Adam V., Rizvi T.F., Zhang B., Ahamad F., Jośko I., Zhu Y., Yang M., Mao C. Nanoparticle-plant interactions: two-way traffic // Small. 2019. V. 15. P. e1901794. https://doi.org/10.1002/smll.201901794
  90. Sarraf M., Vishwakarma K., Kumar V., Arif N., Das S., Johnson R., Janeeshma E., Puthur J.T., Aliniaeifard S., Chauhan D.K., Fujita M. Metal/metalloid-based nanomaterials for plant abiotic stress tolerance: an overview of the mechanisms // Plants. 2022. V. 11. P. 316. https://doi.org/10.3390/plants11030316
  91. Carpenter A.W., Worley B.V., Slomberg D.L., Schoenfisch M.H. Dual action antimicrobials: nitric oxide release from quaternary ammonium-functionalized silica nanoparticles // Biomacromolecules. 2012. V. 13. P. 3334. https://doi.org/10.1038/srep15195
  92. Chandra S., Chakraborty N., Dasgupta A., Sarkar J., Panda K., Acharya K. Chitosan nanoparticles: a positive modulator of innate immune responses in plants // Sci. Rep. 2015. V. 5. P. 15195. https://doi.org/10.1038/srep15195
  93. Khan M.N., Mobin M., Abbas Z.K., AlMutairi K.A., Siddiqui Z.H. Role of nanomaterials in plants under challenging environments // Plant Physiol. Biochem. 2017. V. 110. P. 194. https://doi.org/10.1016/j.plaphy.2016.05.038
  94. Kelly K.L., Coronado E., Zhao L.L., Schatz G.C. The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment // J. Phys. Chem. B. 2003. V. 107. P. 668. https://doi.org/10.1021/jp026731y
  95. Das S., Debnath N., Pradhan S., Goswami A. Enhancement of photon absorption in the light-harvesting complex of isolated chloroplast in the presence of plasmonic gold nanosol – a nanobionic approach towards photosynthesis and plant primary growth augmentation // Gold Bull. 2017. V. 50. P. 247. https://doi.org/10.1007/s13404-017-0214-z
  96. Wei H., Wang E. Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes // Chem. Sov. Rev. 2013. V. 42. P. 6060. https://doi.org/10.1039/c3cs35486e
  97. Manea F., Houillon F.B., Pasquato L., Scrimin P. Nanozymes: gold-nanoparticle based transphosphorylation catalysts // Angew. Chem. Int. Ed. Engl. 2004. V. 116. P. 6291. https://doi.org/10.1002/ange.200460649
  98. Korsvik C., Patil S., Seal S., Self W.T. Superoxide dismutase mimetic properties exhibited by vacancy engineered ceria nanoparticles // Chem. Commun. 2007. V. 10. P. 1056. https://doi.org/10.1039/b615134e
  99. Jv Y., Li B., Cao R. Positively-charged gold nanoparticles as peroxidiase mimic and their application in hydrogen peroxide and glucose detection // Chem. Commun. 2010. V. 46. P. 8017. https://doi.org/10.1039/c0cc0
  100. He W., Zhou Y.T., Wamer W.G., Hu X., Wu X., Zheng Z., Boudreau M.D., Yin J.-J. Intrinsic catalytic activity of Au nanoparticles with respect to hydrogen peroxide decomposition and superoxide scavenging // Biomaterials. 2013. V. 34. P. 765. https://doi.org/10.1016/j.biomaterials.2012.10.010
  101. Mu J., Zhang L., Zhao M., Wang Y. Co3O4 nanoparticles as an efficient catalase mimic: properties, mechanism and its electrocatalytic sensing application for hydrogen peroxide // J. Mol. Catal. A Chem. 2013. V. 378. P. 30. https://doi.org/10.1016/j.molcata.2013.05.016
  102. Gao L., Zhuang J., Nie L., Zhang J., Zhang Y., Gu N., Wang T., Feng J., Yang D., Perret S., Yan X. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles // Nat. Nanotechnol. 2007. V. 2. P. 577. https://doi.org/10.1038/nnano.2007.260
  103. Kisku K., Naik U.C. Nanobiotechnology: a process to combat abiotic stress in crop plants // Nanobiotechnology: mitigation of abiotic stress in plants / Eds. Al-Khayri J.M., Ansari M.I., Singh A.K. Springer: Springer Nature Switzerland AG, 2021. P. 139.
  104. Kohan-Baghkheirati E., Geisler-Lee J. Gene expression, protein function and pathways of Arabidopsis thaliana responding to silver nanoparticles in comparison to silver ions, cold, salt, drought, and heat // Nanomaterials. 2015. V. 5. P. 436. https://doi.org/10.3390/nano5020436
  105. Almutairi Z.M. Influence of silver nano-particles on the salt resistance of tomato (Solanum lycopersicum) during germination // Int. J. Agric. Biol. 2016. V. 18. P. 449. https://doi.org/10.17957/IJAB/15.0114
  106. Vuong L.D. Nanoparticles for the improved crop production // Nanotechnology for agriculture: crop production and protection / Eds. Panpatte D.G., Jhala Y.K. Singapore: Springer Nature Singapore Pte Ltd, 2019. P. 85
  107. Ye Yu., Medina-Velo I.A., Cota-Ruiz K., Moreno-Olivas F., Gardea-Torresdey J.L. Can abiotic stresses in plants be alleviated by manganese nanoparticles or compounds? // Ecotoxicol. Environ. Saf. 2019. V. 184: 109671. https://doi.org/10.1016/j.ecoenv.2019.109671
  108. Hasanpour H., Maali-Amiri R., Zeinali H. Effect of TiO2 nanoparticles on metabolic limitations to photosynthesis under cold in chickpea // Russ. J. Plant Physiol. 2015. V. 62. P. 779. https://doi.org/10.1134/S1021443715060096
  109. Ze Y., Liu C., Wang L., Hong M., Hong F. The regulation of TiO2 nanoparticles on the expression of light-harvesting complex II and photosynthesis of chloroplasts of Arabidopsis thaliana // Biol. Trace Elem. Res. V. 143. P. 1131. https://doi.org/10.1007/s12011-010-8901-0
  110. Venzhik Yu., Deryabin A., Popov V., Dykman L., Moshkov I. Gold nanoparticles as adaptogens increasing the freezing tolerance of wheat seedlings // Environ. Sci. Poll. Res. 2022. V. 29. P. 55235. https://doi.org/10.1007/s11356-022-19759-x

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (121KB)

Copyright (c) 2023 Ю.В. Венжик, А.Н. Дерябин

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies