Physiological Role of pH-Dependent Structural Transition in Oxygen-Evolving Complex of PSII

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Photosystem II (PSII) of the photosynthetic apparatus in oxygenic organisms contains a catalytic center that performs one of the most important reactions in bioenergetics: light-dependent water oxidation to molecular oxygen. The catalytic center is a Mn4CaO5 cluster consisting of four cations of manganese and one calcium cation linked by oxygen bridges. The authors reported earlier that a structural transition occurs at pH 5.7 in the cluster resulting in changes in manganese cation(s) redox potential and elevation of the Mn‑clus-ter resistance to reducing agents. The discovered effect was examined in a series of investigations that are reviewed in this work. It was found that, at pH 5.7, Fe(II) cations replace not two manganese cations as it happens at pH 6.5 but only one cation; as a result, a chimeric Mn3Fe1 cluster is produced. In the presence of exogenous calcium ions, membrane preparations of PSII with such a chimeric cluster are capable of evolving oxygen in the light (at a rate of approximately 25% of the rate in native PSII). It was found that photoinhibition that greatly depends on the processes of oxidation or reduction at pH 5.7 slows down as compared with pH 6.5. PSII preparations were also more resistant to thermal inactivation at pH 5.7 than at pH 6.5. However, in PSII preparations lacking manganese cations in the oxygen-evolving complex, the rates of photoinhibition at pH 6.5 and 5.7 did not differ. In thylakoid membranes, protonophores that abolish the proton gradient and increase pH in the lumen (where the manganese cluster is located) from 5.7 to 7.0 considerably elevated the rate of PSII photoinhibition. It is assumed that the structural transition in the Mn-cluster at pH 5.7 is involved in the mechanisms of PSII defense against photoinhibition.

About the authors

Boris K. Semin

Moscow State University

Author for correspondence.
Email: semin@biophys.msu.ru
Russian Federation, Moscow

Lira N. Davletshina

Moscow State University

Email: semin@biophys.msu.ru
Russian Federation, Moscow

Aleksey V. Loktyushkin

Moscow State University

Email: semin@biophys.msu.ru
Russian Federation, Moscow

Elena R. Lovyagina

Moscow State University

Email: semin@biophys.msu.ru
Russian Federation, Moscow

References

  1. Umena Y., Kawakami K., Shen J.-R., Kamiya N. Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9 Å // Nature. 2011. V. 473. P. 55. https://doi.org/10.1038/nature09913
  2. Suga M., Akita F., Hirata K., Ueno G., Murakami H., Nakajima Y., Shimizu T., Yamashita K., Yamamoto M., Ago H., Shen J.-R. Native structure of photosystem II at 1.95 Å resolution viewed by femtosecond X-ray pulses // Nature. 2015. V. 517. P. 99. https://doi.org/10.1038/nature13991
  3. Shen J.-R. The structure of photosystem II and the mechanism of water oxidation in photosynthesis // Annu. Rev. Plant Biol. 2015. V. 66. P. 23. https://doi.org/10.1146/annurev-arplant-050312-120129
  4. Semin B.K., Davletshina L.N., Seibert M., Rubin A.B. Creation of a 3Mn/1Fe cluster in the oxygen-evolving complex of photosystem II and investigation of its functional activity // J. Photochem. Photobiol. B. 2018. V. 178. P. 192. https://doi.org/10.1016/j.jphotobiol.2017.11.016
  5. Damoder R., Dismukes G.C. pH dependence of the multiline, manganese EPR signal for the 'S2' state in PS II particles. Absence of proton release during the S1 → S2 electron transfer step of the oxygen evolving system // FEBS Lett. 1984. V. 174. P. 157. https://doi.org/10.1016/0014-5793(84)81096-0
  6. Vass I., Styring S. pH-dependent charge equilibria between tyrosine-D and the S states in photosystem II. Estimation of relative midpoint redox potentials // Biochemistry. 1991. V. 30. P. 830. https://doi.org/10.1021/bi00217a037
  7. Haddy A., Hatchell J.A., Kimel R.A., Thomas R. Azide as a competitor of chloride in oxygen evolution by photosystem II // Biochemistry. 1999. V. 38. P. 6104. https://doi.org/10.1021/bi983075c
  8. Schiller H., Dau H. Preparation protocols for high-activity photosystem II membrane particles of green algae and higher plants, pH dependence of oxygen evolution and comparison of the S2-state multiline signal by X-band EPR spectroscopy // J. Photochem. Photobiol. B. 2000. V. 55. P. 138. https://doi.org/10.1016/S1011-1344(00)00036-1
  9. Terentyev V.V., Shukshina A.K., Shitov A.V. Carbonic anhydrase CAH3 supports the activity of photosystem II under increased pH // Biochim. Biophys. Acta Bioenerg. 2019. V. 1860. № 7. P. 582. https://doi.org/10.1016/j.bbabio.2019.06.003
  10. Semin B.K., Davletschina L.N., Aleksandrov A.Yu., Lanchinskaya V.Yu., Novakova A.A., Ivanov I.I. pH dependence of iron binding to the donor side of photosystem II // Biochemistry (Mosc.). 2004. V. 69. P. 410. https://doi.org/10.1023/B:BIRY.0000022066.38297.8a
  11. Semin B.K., Davletshina L.N., Rubin A.B. Correlation between pH dependence of O2 evolution and sensitivity of Mn cations in the oxygen-evolving complex to exogenous reductants // Photosynth. Res. 2015. V. 125. P. 95. https://doi.org/10.1007/s11120-015-0155-4
  12. Shen J.-R., Inoue Y. Low pH-induced dissociation of three extrinsic proteins from O2-evolving photosystem II // Plant Cell Physiol. 1991. V. 32(3). P. 453. https://doi.org/10.1093/oxfordjournals.pcp.a078101
  13. Ono T., Inoue Y. Discrete extraction of the Ca atom functional for O2 evolution in higher plant photosystem II by a simple low pH treatment // FEBS Lett. 1988. V. 227. P. 147. https://doi.org/10.1016/0014-5793(88)80886-X
  14. Bernát G., Morvaridi F., Feyziyev Y., Styring S. pH dependence of the four individual transitions in the catalytic S-cycle during photosynthetic oxygen evolution // Biochemistry. 2002. V. 41. P. 5830. https://doi.org/10.1021/bi011691u
  15. Suzuki H., Sugiura M., Noguchi T. pH dependence of the flash-Induced S-state transitions in the oxygen-evolving center of photosystem II from Thermosynechoccocus elongatus as revealed by Fourier transform infrared spectroscopy // Biochemistry. 2005. V. 44. P. 1708. https://doi.org/10.1021/bi0483312
  16. Ghanotakis D.F., Topper J.N., Yocum C.F. Exogenous reductants reduce and destroy the Mn-complex in photosystem II membranes depleted of the 17 and 23 kDa polypeptides // Biochim. Biophys. Acta. 1984. V. 767. P. 524. https://doi.org/10.1016/0005-2728(84)90051-3
  17. Ono T., Inoue Y. Abnormal redox reactions in photosynthetic O2-evolving centers in NaCl/EDTA-washed PS II. A dark-stable EPR multiline signal and an unknown positive charge accumulator // Biochim. Biophys. Acta. 1990. V. 1020. P. 269. https://doi.org/10.1016/0005-2728(90)90157-Y
  18. Klimov V.V., Allakhverdiev S.I., Shuvalov V.A., Krasnovsky A.A. Effect of extraction and re-addition of manganese on light reactions of photosystem-II preparations // FEBS Lett. 1982. V. 148. P. 307. https://doi.org/10.1016/0014-5793(82)80830-2
  19. Ghirardi M.L., Lutton T.W., Seibert M. Interactions between diphenylcarbazide, zinc, cobalt, and manganese on the oxidizing side of photosystem II // Biochemistry. 1996. V. 35. P. 1820. https://doi.org/10.1021/bi951657d
  20. Allakhverdiev S.I., Yruela I., Picorel R., Klimov V.V. Bicarbonate is an essential constituent of the water-oxidizing complex of photosystem II // Proc. Natl. Acad. Sci. U. S. A. 1997. V. 94. P. 5050. https://doi.org/10.1073/pnas.94.10.5050
  21. Nagata T., Zharmukhamedov S.K., Khorobrykh A.A., Klimov V.V., Allakhverdiev S.I. Reconstitution of the water-oxidizing complex in manganese-depleted photosystem II preparations using synthetic Mn-complexes: a fluorine-19 NMR study of the reconstitution process // Photosynth. Res. 2008. V. 98. P. 277. https://doi.org/10.1007/s11120-008-9319-9
  22. Semin B.K., Seibert M. Substituting Fe for two of the four Mn ions in photosystem II – effects on water-oxidation // J. Bioenerg. Biomembr. 2016. V. 48. P. 227. https://doi.org/10.1007/s10863-016-9651-2
  23. Semin B.K., Davletshina L.N., Goryachev S.N., Seibert M. Ca2+ effects on Fe(II) interactions with Mn-binding sites in Mn-depleted oxygen-evolving complexes of photosystem II and on Fe replacement of Mn in Mn-containing, Ca-depleted complexes // Photosynth. Res. 2021. V. 147(2). P. 229. https://doi.org/10.1007/s11120-020-00813-z
  24. Ono T., Mino H. Unique binding site for Mn2+ ion responsible for reducing an oxidized YZ tyrosine in manganese-depleted photosystem II membranes // Biochemistry. 1999. V. 38. P. 8778. https://doi.org/10.1021/bi982949s
  25. Kuntzleman T., McCarrick R., Penner-Hahn J., Yocum C. Probing reactive sites within the photosystem II manganese cluster: evidence for separate populations of manganese that differ in redox potential // Phys. Chem. Chem. Phys. 2004. V. 6. P. 4897. https://doi.org/10.1039/B406601D
  26. Zabret J., Bohn S., Schuller S.K., Arnolds O., Möller M., Meier-Credo J., Liauw P., Chan A., Tajkhorshid E., Langer J.D., Stoll R., Krieger-Liszkay A., Engel B.D., Rudack T., Schuller J.M., Nowaczyk M.M. Structural insights into photosystem II assembly // Nat. Plants. 2021. V. 7. P. 524. https://doi.org/10.1038/s41477-021-00895-0
  27. Kim C.J., Debus R.J. Evidence from FTIR difference spectroscopy that a substrate H2O molecule for O2 formation in photosystem II is provided by the Ca ion of the catalytic Mn4CaO5 cluster // Biochemistry. 2017. V. 56. P. 2558. https://doi.org/10.1021/acs.biochem.6b01278
  28. Tsui E.Y., Agapie T. Reduction potentials of heterometallic manganese-oxido cubane complexes modulated by redox-inactive metals // Proc. Natl. Acad. Sci. U. S. A. 2013. V. 110. P. 10084. https://doi.org/10.1073/pnas.1302677110
  29. Boussac A., Rappaport F., Carrier P., Verbavatz J.M., Gobin R., Kirilovsky D., Rutherford A., Sugiura M. Biosynthetic Ca2+/Sr2+ exchange in the photosystem II oxygen-evolving enzyme of Thermosynechococcus elongatus // J. Biol. Chem. 2004. V. 279. P. 22809. https://doi.org/10.1074/jbc.M401677200
  30. Kargul J., Maghlaoui K., Murray J.W., Deak Z., Boussac A., Rutherford A.W., Vass I., Barber J. Purification, crystallization and X-ray diffraction analyses of the T. elongatus PSII core dimer with strontium replacing calcium in the oxygen-evolving complex // Biochim. Biophys. Acta Bioenerg. 2007. V. 1767. P. 404. https://doi.org/10.1016/j.bbabio.2007.01.007
  31. Koua F.H.M. Structural changes in the acceptor site of photosystem II upon Ca2+/Sr2+ exchange in the Mn4CaO5 cluster site and the possible long-range interactions // Biomolecules. 2019. V. 9. P. 371. https://doi.org/10.3390/biom9080371
  32. Ghanotakis D.F., Babcock G.T., Yocum C.F. Calcium reconstitutes high rates of oxygen evolution in polypeptide depleted photosystem II preparations // FEBS Lett. 1984. V. 167. P. 127. https://doi.org/10.1016/0014-5793(84)80846-7
  33. Vrettos J.S., Limburg J., Brudvig G.W. Mechanism of photosynthetic water oxidation: combining biophysical studies of photosystem II with inorganic model chemistry // Biochim. Biophys. Acta. 2001. V. 1503. P. 229. https://doi.org/10.1016/S0005-2728(00)00214-0
  34. Ghosh I., Khan S., Banerjee G., Dziarski A., David J. Vinyard D.J., Debus R.J., Brudvig G.W. Insights into proton-transfer pathways during water oxidation in photosystem II // J. Phys. Chem. B. 2019. V. 123. P. 8195. https://doi.org/10.1021/acs.jpcb.9b06244
  35. Shutova T., Kenneweg H., Buchta J., Nikitina J., Terentyev V., Chernyshov S., Andersson B., Allakhverdiev S., Klimov V., Dau H., Junge W., Samuelsson G. The photosystem II-associated Cah3 in Chlamydomonas enhances the O2 evolution rate by proton removal // EMBO J. 2008. V. 27. P. 782. https://doi.org/10.1038/emboj.2008.12
  36. Tokano T., Kato Y., Sugiyama S., Uchihashi T., Noguchi T. Structural dynamics of a protein domain relevant to the water-oxidizing complex in photosystem II as visualized by high-speed atomic force microscopy // J. Phys. Chem. B. 2020. V. 124. P. 5847. https://doi.org/10.1021/acs.jpcb.0c03892
  37. Semin B.K., Ivanov I.I., Rubin A.B., Parak F. High-specific binding of Fe(II) at the Mn-binding site in Mn-depleted PSII membranes from spinach // FEBS Lett. 1995. V. 375. P. 223. https://doi.org/10.1016/0014-5793(95)01215-Z
  38. Semin B.K., Ghirardi M.L., Seibert M. Blocking of electron donation by Mn(II) to YZ· following incubation of Mn-depleted photosystem II membranes with Fe(II) in the light // Biochemistry. 2002. V. 41. P. 5854. https://doi.org/10.1021/bi0200054
  39. Semin B.K., Seibert M. A carboxylic residue at the high-affinity, Mn-binding site participates in the binding of iron cations that block the site // Biochim. Biophys. Acta. 2006. V. 1757(3). P. 189. https://doi.org/10.1016/j.bbabio.2006.02.001
  40. Virgin I., Styring S., Andersson B. Photosystem II disorganization and manganese release after photoinhibition of isolated spinach thylakoid membranes // FEBS Lett. 1998. V. 233. P. 408. https://doi.org/10.1016/0014-5793(88)80472-1
  41. Hakala M., Tuominen I., Keränen M., Tyystjärvi T., Tyystjärvi E. Evidence for the role of the oxygen-evolving manganese complex in photoinhibition of photosystem II // Biochim. Biophys. Acta. 2005. V. 1706. P. 68. https://doi.org/ o.2004.09.001https://doi.org/10.1016/j.bbabi
  42. Tyystjärvi E. Photoinhibition of photosystem II and photodamage of the oxygen evolving manganese cluster // Coord. Chem. Rev. 2008. V. 252. P. 361. https://doi.org/10.1016/j.ccr.2007.08.021
  43. Pospišil P. Molecular mechanisms of production and scavenging of reactive oxygen species by photosystem II // Biochim. Biophys. Acta. 2012. V. 1817. P. 218. https://doi.org/10.1016/j.bbabio.2011.05.017
  44. Davletshina L.N., Semin B.K. pH dependence of photosystem II photoinhibition: relationship with structural transition of oxygen-evolving complex at the pH of thylakoid lumen // Photosynth. Res. 2020. V. 145. P. 135. https://doi.org/10.1007/s11120-020-00769-0
  45. Klimov V.V., Shafiev M.A., Allakhverdiev S.I. Photoinactivation of the reactivatipon capacity of photosystem II in pea subchloroplast particles after a complete removal of manganese // Photosynth. Res. 1990. V. 23. P. 59. https://doi.org/10.1007/BF00030063
  46. Kramer D.M., Sacksteder C.A., Cruz J.A. How acidic is the lumen? // Photosynth. Res. 1999. V. 60. P. 151. https://doi.org/10.1023/A:1006212014
  47. Cruz J.A., Sacksteder C.A., Kanazawa A., Kramer D.M. Contribution of electric field (Δψ) to steady-state transthylakoid proton motive force (pmf) in vitro and in vivo. Control of PMF parsing into Δψ and ΔpH by ionic strength // Biochemistry. 2001. V. 40. P. 1226. https://doi.org/10.1021/bi0018741
  48. Takizawa K., Cruz J.A., Kanazawa A., Kramer D.M. The thylakoid proton motive force in vivo. Quantitative, non-invasive probes, energetics, and regulatory consequences of light-induced PMF // Biochim. Biophys. Acta. 2007. V. 1767. P. 1233.
  49. https://doi.org/ o.2007.07.006https://doi.org/10.1016/j.bbabi
  50. Cruz J.A., Kanazawa A., Treff N., Kramer D.M. Storage of light-driven transthylakoid proton motive force as an electric field (Δψ) under steady-state conditions in intact cells of Chlamydomonas reinhardtii // Photosynth. Res. 2005. V. 85. P. 221. https://doi.org/10.1007/s11120-005-4731-x
  51. Kramer D.M., Cruz J.A., Kanazawa A. Balancing the central roles of the thylakoid proton gradient // Trends Plant Sci. 2003. V. 8. P. 27. https://doi.org/10.1016/S1360-1385(02)00010-9
  52. Vershubskii A.V., Trubitsin B.V., Priklonskii V.I., Tikhonov A.N. Lateral heterogeneity of the proton potential along the thylakoid membranes of chloroplasts // Biochim. Biophys. Acta Biomembr. 2017. V. 1859. P. 388. https://doi.org/10.1016/j.bbamem.2016.11.016
  53. Tikhonov A.N. Photosynthetic electron and proton transport in chloroplasts: EPR Study of ΔpH generation, an overview // Cell Biochem. Biophys. 2017. V. 75. P. 421. https://doi.org/10.1007/s12013-017-0797-2
  54. Sen K., Ghosh A., Chakraborty M., Maity S., Ghosh S., DasGupta M. Trans-thylakoid ΔpH dependent oscillation of FPSI/FPSII under continuous irradiance in isolated thylakoids // J. Bioenerg. Biomembr. 2014. V. 46. P. 71. https://doi.org/ 3-013-9533-9https://doi.org/10.1007/s1086
  55. Yamashita A., Nijo M., Pospišil P., Morita N., Takenaka D., Aminaka R., Yamamoto Yo., Yamamoto Ya. Quality control of photosystem II. Reactive oxygen species are responsible for the damage to photosystem II under moderate heat stress // J. Biol. Chem. 2008. V. 283. P. 28380. https://doi.org/10.1074/jbc.M710465200
  56. Lovyagina E., Semin B. Elevation of photosystem II thermal stability at pH 5.7 due to the structural transition in the oxygen-evolving complex // J. Plant Biochem. Biotechnol. 2021. https://doi.org/10.1007/s13562-021-00693-x

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (721KB)
3.

Download (133KB)
4.

Download (57KB)
5.

Download (481KB)

Copyright (c) 2023 Б.К. Сёмин, Л.Н. Давлетшина, А.В. Локтюшкин, Е.Р. Ловягина

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies