Changes in the structure of the Fe–Ni–Ti–C–B composite during hot plastic deformation

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The change in the structure and hardness of the Fe–Ni–Ti–C–B system composite, obtained by the method of self-propagating high-temperature synthesis (SHS), after hot plastic deformation under uniaxial compression conditions has been studied. The matrix of the composite is a solid solution of Ni and Ti in a γ-Fe crystal lattice, strengthening phases are TiC, TiB2, Fe2B, Ni3Ti and NiTi. It is shown that during uniaxial compression upon heating, recrystallization processes occur in the metal matrix of the composite, which facilitate further deformation. It is found that, after compression at a temperature of 910°C and a pressure of 300 MPa, the true deformation of the composite is 0.37. In this case, in the central part of the sample in the region of compressive stresses, the ratio of deformed and recrystallized grains is approximately the same. On the lateral surface of the samples in the zone of action of tensile stresses, microcracks with a depth of less than 0.2 mm appear in zones of the eutectic γ + Fe2B structure.

全文:

受限制的访问

作者简介

N. Pugacheva

Institute of Engineering Science, Ural Branch, Russian Academy of Sciences; Ural Federal University named after the First President of Russia B. N. Yeltsin

编辑信件的主要联系方式.
Email: nata5-4@yandex.ru
俄罗斯联邦, Ekaterinburg, 620049; Ekaterinburg, 620002

Т. Bykova

Institute of Engineering Science, Ural Branch, Russian Academy of Sciences; Ural Federal University named after the First President of Russia B. N. Yeltsin

Email: nata5-4@yandex.ru
俄罗斯联邦, Ekaterinburg, 620049; Ekaterinburg, 620002

D. Kгyuchkov

Institute of Engineering Science, Ural Branch, Russian Academy of Sciences

Email: nata5-4@yandex.ru
俄罗斯联邦, Ekaterinburg, 620049

参考

  1. Мержанов А.Г. Твердопламенное горение / Монография. Черноголовка: ИСМАН, 2000. 224 с.
  2. Амосов А.П., Боровинская И.П., Мержанов А.Г. Порошковая технология самораспространяющегося высокотемпературного синтеза материалов. М.: Машиностроение-1, 2007. 472 с.
  3. Kim J.S., Dudina D.V., Kom J.C., Kwon Y.S., Park J.J., Rhu C.K. Properties of Cu-based nanocomposites produced by mechanically – activated self – propagating high – temperature synthesis and spark – plasma sintering // J. Nanosci. Nanotechnol. 2010. V. 10. P. 252–257.
  4. Yoang O.N.T., Hoang V.N., Kim J.S., Dudina D.V. Structural Investigation of TiC–Cu Nanocomposites Prepared by Ball Milling and Spark Plasma Sintering // Metals. 2017. V. 7. P. 123.
  5. Николин Ю.В., Матевосян М.Б., Кочугов С.П., Пугачева Н.Б. Патент на изобретение РФ № 2680489. Способ изготовления многослойной износостойкой пластины. Приоритет от 10.11.2017 до 10.11.2037.
  6. Филиппенков А.А., Цикарев В.Г., Алабушев А.В. Патент на изобретение РФ № 2691656. Шихта и способ получения износостойкого материала с её использованием методом СВС. Приоритет от 22.01.2018 до 22.01.2038.
  7. Фадин В.В., Колубаев А.В., Аулетдинова М.И. Композиты на основе карбида титана, полученные методом технологического горения // Перспективные материалы. 2011. № 4. С. 91–96.
  8. Pugacheva N.B., Nikolin Yu.V., Malygina I. Yu., Trushina E.B. Formation of the structure of Fe–Ni–Ti–C–B composites under self-propagating hightemperature synthesis // AIP Conference Proceedings. 2018. V. 2053. Р. 020013. https://doi.org/10.1063/1.5084359
  9. Пугачева Н.Б., Николин Ю.В., Сенаева Е.И., Малыгина И.Ю. Структура СВС-композитов системы Fe–Ti–C–B // ФММ. 2019. Т. 120. № 11. С. 1174–1180.
  10. Федотов А.Ф. Закономерности уплотнения и формообразования при СВС-прессовании с сыпучей оболочкой // Изв. вузов. Порошковая металлургия и функциональные покрытия, 2008. № 1. С. 16–23.
  11. Шербаков В.А., Грядунов А.Н., Алымов М.И. Микроструктурные особенности СВС-прессования композитов ZrB2–B4C и TiB2–B4C // Письма о материалах. 2019. Т. 9. № 1 (33). С. 11–16.
  12. Богатов Ю.В. Получение твердосплавного материала методом СВС-прессования в открытой матрице // Изв. вузов. Порошковая металлургия и функциональные покрытия. 2019. № 4. С. 21–29.
  13. Stolin A.M., Bazhin P.M. Manufacture of multipurpose composite and ceramic materials in the combustion regime and high-temperature deformation (shs extrusion) // Theoret. Found. Chem. Eng. 2014. V. 48. P. 751–763.
  14. Пугачева Н.Б., Николин Ю.В., Быкова Т.М., Сенаева Е.И. Влияние химического состава матрицы на структуру и свойства монолитных СВС-композитов // Обработка металлов (технология, оборудование, инструменты). 2021. Т. 23. № 3. P. 124–138. https://doi.org/10.17212/1994-6309-2021-23.3-124-138
  15. Pugacheva N., Kryuchkov D., Bykova T., Vichuzhanin D. Studying the Plastic Deformation of Cu–Ti–C–B Composites in a Favorable Stress State // Materials. 2023. V. 16. Issue 8. P. 320.
  16. Pugacheva N.B., Nikolin Yu.V., Senaeva E.I. The structure and wear resistance of a Ti–Ni–Fe–C–B composite // AIP Conference Proceedings. 2019. V. 2176. P. 020007. https://doi.org/10.1063/1.5135119
  17. Пугачева Н.Б., Быкова Т.М., Сенаева Е.И. Структура и характер разрушения композита Сu–Ti–Al–Ni–Fe–C–B после абразивного износа // ФММ. 2022. Т. 123. № 10. С. 1029–1037.
  18. Цикарев В.Г., Филлипенков А.А., Филиппов М.А., Алабушев А.В., Шарапова В.А. Опыт получения композиционных материалов системы Ti–Cu–C СВС-процессом // Известия вузов. Порошковая металлургия и функциональные покрытия. 2021. Т. 15. № 4. С. 4–11.
  19. Pugacheva N.B., Bykova T.M. Micromechanical Properties and Character of Fracture in Bending of the SHS Composite of the Fe–Ni–Ti–C–B System // Procedia Structural Integrity. 2022. № 40. P. 372–377.
  20. Пугачева Н.Б., Вичужанин Д.И., Быкова Т.М., Каманцев И.С. Исследование пластической деформируемости композита системы Ni–Fe–Сr–Ti–B–C // Diagnostics, Resource and Mechanics of materials and structures. 2023. № 5. С. 15–30.
  21. Пугачева Н.Б., Крючков Д.И., Нестеренко А.В., Смирнов С.В., Швейкин В.П. Исследование кратковременной высокотемпературной ползучести алюмоматричного композита Al-6Zn-2.5Mg-1Cu/10SiCp // ФММ. 2021. Т. 122. № 8. С. 838–844.
  22. Крючков Д.И., Нестеренко А.В., Смирнов С.В., Пугачева Н.Б., Вичужанин Д.И., Быкова Т.М. Влияние всесторонней ковки в условиях кратковременной ползучести на структуру и механические свойства алюмоматричного композита Al7075/10SiCp // ФММ. 2021. Т. 122. № 10. С. 1054–1064.
  23. Крючков Д.И., Пугачева Н.Б., Быкова Т.М. Деформационнотермическая обработка композита Al/10SiC // Diagnostics, Resource and Mechanics of materials and structures. 2023. № 6. С. 35–48.
  24. Volkov A. Yu., Kalonov A.A., Komkova D.A. Effect of annealing on the structure, mechanical and electrical properties of Cu/Mg-composite wires // Mater. Charact. 2022. № 183. P. 111606.
  25. Volkov A. Yu., Antonov B.D., Patrakov E.I., Volkova E.G., Komkova D.A., Kalonov A.A., Glukhov A.V. Abnormally high strength and low electrical resistivity of the deformed Cu/Mg-composite with a big number of Mg-filaments // Materials & Design. 2020. V. 185. P. 108276.
  26. Волков А.Ю., Калонов А.А., Комкова Д.А., Глухов А.В. Структура и свойства Cu/Mg-композитов, полученных методом гидроэкструзии // ФММ. 2018. Т. 119. № 10. С. 1002–1011.
  27. Волков А.Ю., Калонов А.А., Завалишин В.А., Глухов А.В., Комкова Д.А., Антонов Б.Д. Влияние интерфейсов на физико-механические свойства Cu/Mg-композитов // ФММ. 2020. Т. 121. № 6. С. 628–634.
  28. Дерягина И.Л., Попова Е.Н., Валова-Захаревская Е.Г., Патраков Е.И. Структура и термическая стабильность высокопрочного композита Cu-18Nb в зависимости от степени деформации // ФММ. 2018. Т. 119. № 1. С. 99–108.
  29. Deryagina I.L., Popova E.N., Patrakov E.I. Structure and Properties of High-Strength Cu-7.7Nb Composite Wires under Various Steps of Strain and Annealing Modes // Metals. 2023. V. 13. 1576 (18 pp.).
  30. Ram Naresh Rai, Prasada Rao A.K., Dutta G.L., Chakraborty M. Forming Behavior of Al–TiC In-situ Composites // Materials Science Forum. 2013. V. 765. P. 418–422.
  31. Huang K., Logé R.E. A review of dynamic recrystallization phenomena in metallic materials // Materials & Design. 2016. № 111. P. 548–574.
  32. Zhu J., Liu S., Yuan X., Qing Liu Q. Comparing the Through-Thickness Gradient of the Deformed and Recrystallized Microstructure in Tantalum with Unidirectional and Clock Rolling // Materials. 2019. № 12. P. 169.
  33. Захаров А.М. Диаграмма состояния двойных и тройных систем. М.: Металлургия, 1990. 350 с.
  34. Корчагин М.А., Гаврилов А.И., Зарко В.Е., Кискин А.Б., Иордан Ю.В., Трушляков В.И. Самораспространяющийся высокотемпературный синтез в механически активированных смесях карбида бора с титаном // Физика горения и взрыва. 2017. Т. 53. № 6. С. 58–66.
  35. Пугачева Н.Б., Быкова Т.М., Замараев Л.М. Влияние состава атмосферы на механизм разрушения боридного покрытия на штамповой стали при термоциклировании // ФММ. 2020. Т. 121. № 6. С. 651–658.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. External appearance of a sandwich plate: 1 – composite; 2 – steel shell.

下载 (142KB)
3. Fig. 2. Modes of thermomechanical processing of composite: a – heating modes; b – deformation modes.

下载 (131KB)
4. Fig. 3. Microstructure of the Fe–Ni–Ti–C–B composite: 1 – γ-(Ni,Fe) matrix; 2 – TiC; 3 – TiB2; 4 – γ-(Ni,Fe)eut.; 5 – Fe2Beut.

下载 (326KB)
5. Fig. 4. Fragment of the diffraction pattern of the composite [9].

下载 (75KB)
6. Fig. 5. Misorientation of grains in the austenitic matrix of the original composite.

下载 (336KB)
7. Fig. 6. Relief of the side surface of the composite samples after deformation-heat treatment: a and b – mode 1, e = 0.008; c, d – mode 2, e = 0.025; d, e – mode 3, e = 0.37; A – sections with the structure γ-Fe + TiC + TiB2, B – eutectic γ-Fe + Fe2B, C – γ-Fe + NiTi + Ni3Ti, the arrow indicates the direction of deformation.

下载 (917KB)
8. Fig. 7. Microstructure of the composite after treatments: a – mode 1; b – mode 2, c – mode 3.

下载 (448KB)
9. Fig. 8. Misorientation of austenite grains in the composite matrix after deformation-heat treatments: a – mode 1; b – mode 2; c – mode 3.

下载 (556KB)


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».