Evolution of the Structure and Phase Composition of a High-Entropic CoCrFeNiCu Alloy during Prolong Annealing

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Abstract

—The thermal stability of a high-entropy alloy (HEA) CoCrFeNiCu was studied during long-term annealing for 204 days in the temperature range 873–1273 K. The alloy obtained by mechanochemical alloying of metal powders in a planetary mill during 120 min in an Ar environment is a substitutional solid solution based on a high-entropy phase with a face-centered cubic structure (FCC). Upon annealing, the initial FCC phase decomposes within 1–3 days into a copper-enriched FCC1 phase and a copper-depleted FCC2 phase with similar crystal lattice parameters of 3.60 and 3.57 Å, respectively. During the entire annealing time, the intensities of the diffraction lines of theFCC1 and FCC2 phases are redistributed, the dynamics and nature of which depends on the temperature and duration of the process. After the first three days and until the end of the annealing, the HEA retains the FCC structure of the substitutional solid solution, and the unit cell parameters of the formed FCC phases remain constant with an error of 0.1% up to 204 days. The five-component matrix formed after annealing has the chemical composition Co0.23Cr0.23Fe0.23Ni0.23Cu0.08 and is stable. Also, during the entire period of annealing, an increase in the grain size is observed: at first, when an active rearrangement of the structure occurs, the size increases rapidly, then, in the period from 1 to 30 days, grain growth is limited by the diffusion of components, and at very long time intervals, grain growth is even more inhibited.

About the authors

M. V. Poliakov

Merzhanov Institute of Structural Macrokinetics and Materials Science Russian Academy of Sciences (ISMAN); Institute of Nanotechnology of Microelectronics of the Russian Academy of Sciences

Author for correspondence.
Email: maxsimpolykovv@gmail.com
Russia, 142432, Moscow Region, Chernogolovka; Russia, 119991, Moscow, Leninsky Av., 32а

D. Yu. Kovalev

Merzhanov Institute of Structural Macrokinetics and Materials Science Russian Academy of Sciences (ISMAN)

Email: maxsimpolykovv@gmail.com
Russia, 142432, Moscow Region, Chernogolovka

L. S. Volkova

Institute of Nanotechnology of Microelectronics of the Russian Academy of Sciences

Email: maxsimpolykovv@gmail.com
Russia, 119991, Moscow, Leninsky Av., 32а

S. G. Vadchenko

Merzhanov Institute of Structural Macrokinetics and Materials Science Russian Academy of Sciences (ISMAN)

Email: maxsimpolykovv@gmail.com
Russia, 142432, Moscow Region, Chernogolovka

A. S. Rogachev

Merzhanov Institute of Structural Macrokinetics and Materials Science Russian Academy of Sciences (ISMAN)

Email: maxsimpolykovv@gmail.com
Russia, 142432, Moscow Region, Chernogolovka

References

  1. Murty B.S., Ranganathan S., Yeh J.W., Bhattacharjee P.P. High Entropy Alloys. Elsevier. 2019. 388 p.
  2. Yeh J.W., Chen S.K., Lin S.J., Gan J.Y., Chin T.S., Shun T.T., Tsau C.H., Chang S.Y. Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes // Adv. Eng. Mater. 2004. V. 6. № 5. P. 299–303.
  3. Cantor B., Chang I.T.H., Knight P., Vincent A.J.B. Microstructural Development in Equiatomic Multicomponent Alloys // Mater. Sci. Eng. A. 2004. V. 375–377. № 1–2 SPEC. ISS. P. 213–218.
  4. Cantor B. Progress in Materials Science Multicomponent high-entropy Cantor alloys // Prog. Mater. Sci. 2021. V. 120. Art. 100754.
  5. Рогачев А.С. Структура, стабильность и свойства высокоэнтропийных сплавов // ФММ. 2020. Т. 121. № 8. С. 807–841.
  6. Miracle D.B., Senkov O.N. A critical review of high entropy alloys and related concepts // Acta Mater. 2017. V. 122. P. 448–511.
  7. Yeh J.-W. Recent progress in high-entropy alloys // Ann. Chim. Sci. des Mater. 2006. V. 31. P. 633–648.
  8. Wang X.F., Zhang, Y., Qiao Y., Chen G.L. Novel microstructure and properties of multicomponent CoCrCuFeNiTix alloys // Intermetallics. 2007. V. 15. № 3. P. 357–362.
  9. Tong C.J., Chen Y.L., Chen, S.K., Yeh J.W., Shun T.T., Tsau C.H., Lin S.J., Chang S.Y. Microstructure characterization of AlxCoCrCuFeNi high-entropy alloy system with multiprincipal elements // Metall. Mater. Trans. A. Phys. Metall. Mater. Sci. 2005. V. 36. № 4. P. 881–893.
  10. Wang J., Zhang Y., Niu S.Z., Wang W.Y., Kou H.C., Li J.S., Wang S.Q., Beaugnon E. Formation of a hexagonal closed-packed phase in Al0.5CoCrFeNi high entropy alloy // MRS Commun. 2017. V. 7. P. 879–884.
  11. Syed Ghazi S., Ravi K.R. Phase-evolution in high entropy alloys: Role of synthesis route // Intermetallics. 2016. V. 73. P. 40–42.
  12. Koch C.C. Nanocrystalline high-entropy alloys // J. Mater. Res. 2017. V. 32. P. 3435–3444.
  13. Shkodich N.F., Spasova M., Farle M., Kovalev D.Y., Nepapushev A.A., Kuskov K.V., Vergunova Y.S., Scheck Y.B., Rogachev A.S. Structural evolution and magnetic properties of high-entropy CuCrFeTiNi alloys prepared by high-energy ball milling and spark plasma sintering // J. Alloy. Compd. 2020. V. 816. Art. 152611. P. 1–14.
  14. Varalakshmi S., Kamaraj M., Murty B.S. Synthesis and characterization of nanocrystalline AlFeTiCrZnCu high entropy solid solution by mechanical alloying // J. Alloy. Compd. 2008. V. 460. P. 253–257.
  15. An Z., Jia H., Wu Y., Rack P.D., Patchen A.D., Liu Y., Ren Y., Li N., Liaw P.K. Solid- solution CrCoCuFeNi high-entropy alloy thin films synthesized by sputter deposition // Mater. Res. Lett. 2015. V. 3. P. 203–209.
  16. Arfaoui M., Radnóczi G., Kis V.K. Transformations in CrFeCoNiCu high entropy alloy thin films during in-situ annealing in TEM // Coatings. 2020. V. 10. P. 1–15.
  17. Park N., Watanabe I., Terada D., Yokoyama Y., Liaw P.K., Tsuji N. Recrystallization behavior of CoCrCuFeNi high-entropy alloy // Metall. Mater. Trans. A. Phys. Metall. Mater. Sci. 2015. V. 46. P. 1481–1487.
  18. Lin C.M., Tsai H.L., Bor H.Y. Effect of aging treatment on microstructure and properties of high-entropy Cu0.5CoCrFeNi alloy // Intermetallics. 2010. V. 18. P. 1244–1250.
  19. Zheng H., Chen R., Qin G., Li X., Su Y., Ding H., Guo J., Fu H. Microstructure evolution, Cu segregation and tensile properties of CoCrFeNiCu high entropy alloy during directional solidification // J. Mater. Sci. Technol. 2020. V. 38. P. 19–27.
  20. Praveen S., Murty B.S., Kottada R.S. Alloying behavior in multi-component AlCoCrCuFe and NiCoCrCuFe high entropy alloys // Mater. Sci. Eng. A. 2012. V. 534. P. 83–89.
  21. Thangaraju S., Bouzy T.E., Hazotte A. Phase stability of a mechanically alloyed CoCrCuFeNi high entropy alloy // Adv. Eng. Mater. 2017. V. 19. Art. 1700095.
  22. Pandey V.K., Shivam V., Sarma B.N., Mukhopadhyay N.K. Phase evolution and thermal stability of mechanically alloyed CoCrCuFeNi high entropy alloy // Mater. Res. Express. 2019. V. 6. Art. 1655b9.
  23. Shkodich N.F., Kovalev I.D., Kuskov K. V., Kovalev D.Y., Vergunova Y.S., Scheck Y.B., Vadchenko S.G., Politano O., Baras F., Rogachev A.S. Fast mechanical synthesis, structure evolution, and thermal stability of nanostructured CoCrFeNiCu high entropy alloy // J. Alloys Compd. 2022. V. 893. Art. 161839. P. 1–13.
  24. Otto F., Dlouhý A., Pradeep K.G., Kuběnová M., Raabe D., Eggeler G., George E.P. Decomposition of the single-phase high-entropy alloy CrMnFeCoNi after prolonged anneals at intermediate temperatures // Acta Mater. 2016. V. 112. P. 40–52.
  25. Laplanche G., Berglund S., Reinhart C., Kostka A., Fox F., George E.P. Phase stability and kinetics of σ-phase precipitation in CrMnFeCoNi high-entropy alloys // Acta Mater. 2018. V. 161. P. 338–351.
  26. Rogachev A.S., Vadchenko S.G., Kovalev D.Y., Kochetov N.A., Zhukovskyi, M., Orlova T., Mukasyan A.S. Long term stability of a high-entropy CoCrFeNiTi alloy fabricated by mechanical alloying // J. Alloys Compd. 2023. V. 931. Art. 167470. P.1–14.
  27. Kiryukhantsev-Korneev P., Sytchenko A., Moskovskikh D., Kuskov K., Volkova L., Poliakov M., Pogozhev Y., Yudin S., Yakushko E., Nepapushev A. Hard Wear-Resistant Ti–Si–C Coatings for Cu–Cr Electrical Contacts // Materials. 2023. V. 16. № 3. P. 2–3.
  28. ГОСТ 21073.0–75. Металлы цветные. Определение величины зерна. Общие требования. Дата введения: 01.07.1976.
  29. Чернявский К.С. Стереология в металловедении. М.: Металлургия, 1977. 280 с.
  30. Zhang Y., Zuo T.T., Tang Z., Gao M.C., Dahmen K.A., Liaw P.K., Lu Z.P. Microstructures and properties of high-entropy alloys // Progress in Materials Science. 2014. V. 61. P. 1–93.
  31. Wang Z., Huang Y., Yang Y., Wang J., Liu C.T. Atomic-size effect and solid solubility of multicomponent alloys // Scripta Mater. 2015. V. 94 P. 28–31.
  32. Guo S., Ng C., Lu J., Liu C.T. Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys // J. Appl. Phys. 2011. V. 109. № 10. Art. 103 505. P. 1–5.
  33. Mulliken R.S. A New Electroaffinity Scale; Together with Data on Valence States and on Valence Ionization Potentials and Electron Affinities // J. Chemical Physics. 1934. V. 2. № 11. P. 782–793.
  34. Mulliken R.S. Chemical bonding // Ann. Rev. Phys. Chem. 1978. V. 29. P. 1–30.
  35. Филиппов Г.Г., Горбунов А.И. Новый подход к выбору практической шкалы электроотрицательностей атомов // Российский химический журн. 1995. Т. 39. Вып. 2. С. 39–42.
  36. He F., Wang Z., Wu Q., Li J., Wang J., Liu C.T. Phase separation of metastable CoCrFeNi high entropy alloy at intermediate temperatures // Scripta Materialia. 2017. V. 126. P. 15–19.
  37. Praveen S., Basu J., Kashyap S., Kottada R.S. Exceptional resistance to grain growth in nanocrystalline CoCrFeNi high entropy alloy at high homologous temperatures // J. Alloys Compd. 2016. V. 662. P. 361–367.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (626KB)
3.

Download (131KB)
4.

Download (894KB)
5.

Download (202KB)
6.

Download (3MB)
7.

Download (3MB)
8.

Download (47KB)
9.

Download (4MB)

Copyright (c) 2023 М.В. Поляков, Д.Ю. Ковалев, Л.С. Волкова, С.Г. Вадченко, А.С. Рогачев

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies