Grain boundary segregations in high entropy CoNiCrFeMn alloy. Atomistic MD/MC simulation

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The formation of grain boundary segregations in the equiatomic high-entropy alloy (HEA) CoNiCrFeMn upon annealing at moderate temperatures was studied using atomistic MD/MC simulation. It has been established that at the early stage of annealing, regardless of the type of grain boundaries (GBs), two types of regions with chemical short-range order Ni–Mn–Cr and Fe–Co are formed in the volume of grains. With increasing annealing time, a pronounced tendency to the formation of unusually wide segregations on the GB is observed. The main element enriching the grain size is Cr, and Fe–Co clusters are displaced to the center of the grain. The influence of GB on the redistribution of alloy components and the phase stability of HEA is discussed.

About the authors

I. N. Kar’kin

Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences

Email: lidiakarkina@gmail.com
Russian Federation, Ekaterinburg, 620108

L. E. Kar’kina

Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences

Author for correspondence.
Email: lidiakarkina@gmail.com
Russian Federation, Ekaterinburg, 620108

Yu. N. Gornostyrev

Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Scienc

Email: lidiakarkina@gmail.com
Russian Federation, Ekaterinburg, 620108

References

  1. Zhang Y., Zuo T.T., Tang Z., Gao M.C., Dahmen K.A., Liaw P.K. and Lu Z.P. Microstructures and properties of high-entropy alloys // Prog. Mater. Sci. 2014. V. 61. P. 1–93.
  2. Miracle D.B., Senkov O.N. A critical review of high entropy alloys and related concepts // Acta Materialia. 2017. V. 122. P. 448–511.
  3. Tokarewicz M., Gradzka-Dahlke M. Review of Recent Research on AlCoCrFeNi High-Entropy Alloy //Metals. 2021. V. 11. P. 1302–1316.
  4. Cantor B., Chang I.T.H., Knight P., Vincent A.J.B. Microstructural development in equiatomic multicomponent alloys // Mater. Sci. Eng. A. 2004. V. 375–377. P. 213–218.
  5. Otto F., Dlouhý A., Pradeep K.G., Kuběnová M., Raabe D., Eggeler G. Decomposition of the single-phase high-entropy alloy CrMnFeCoNi after prolonged anneals at intermediate temperatures // Acta Mater. 2016. V. 112. P. 40–52.
  6. Laurent-Brocq M., Akhatova A., Perrière L., Chebini S., Sauvage X., Leroy E., Champion Y. Insights into the phase diagram of the CrMnFeCoNi high entropy alloy // Acta Materialia. 2015. V. 88. P. 355–365.
  7. Schuh B., Mendez-Martin F., Volker B., George E.P., Clemenb H., Pippan R., Hohenwarter A. Mechanical properties, microstructure and thermal stability of a nanocrystalline CoCrFeMnNi high-entropy alloy after severe plastic deformation // Acta Mater. 2015. V. 96. P. 258–268.
  8. Huang X., Liu L., Duan X., Liao W., Huang J., SunH., Yu Y. Atomistic simulation of chemical short-range order in HfNbTaZr high entropy alloy based on a newly-developed interatomic potential // Mater. Design. 2021. V. 2021. P. 09560.
  9. Antillon E., Woodward C., Rao S.I., Akdim B., Parthasarathy T.A. Chemical short-range order strengthening in a model FCC high entropy alloy // Acta Mater. 2020. V. 190. P. 29–42.
  10. Jiana W-R., Xieb Z., Xu S., Su Y., Yao X., Beyerlein I.J. Effects of lattice distortion and chemical short-range order on the mechanisms of deformation in medium entropy alloy CoCrNi // Acta Mater. 2020. V. 199. P. 352–369.
  11. Xing B., Wang X., Bowmana W.J., Cao P. Short-range order localizing diffusion in multi-principal element alloys // Scripta Mater. 2022. V. 210. P. 114450.
  12. Zhang F.X., Zhao S., Jin K., Xue H., Velisa G., Bei H., Huang R., Ko J.Y.P., Pagan D.C., Neuefeind J.C., Weber W.J., Zhang Y. Local Structure and Short-Range Order in a NiCoCr Solid Solution Alloy // Phys. Rev. Lett. 2017. V. 118. P. 205501.
  13. Lei Z.F., Liu X.J., Wu Y., Qiao S., Zhu Guo-liang, Dong An-ping, Shu Da, Sun Bao-de. Enhanced strength and ductility in a high-entropy alloy via ordered oxygen complexes // Nature. 2018. V. 563 (7732). P. 546–550.
  14. Ding Q.Q., Zhang Y., Chen X., Fu X., Chen D., Chen S., Gu L., Wei F., Bei H., Gao Y., Wen M., Li J., Zhang Z., Zhu T., O Ritchie R., Yu Q. Tuning element distribution, structure and properties by composition in high-entropy alloys // Nature. 2019. V. 574 (7777). P. 223–227.
  15. Ma Y., Wang Q., Santodonato C., Li L.J., Feygenson M., Dong C., Liaw P. K. Chemical short-range orders and the induced structural transition in high-entropy alloys // Scripta Mater. 2018. V. 144. P. 64–68.
  16. Mizunoa M., Sugita K., Araki H. Prediction of short-range order in CrMnFeCoNi high-entropy alloy // Results in Physics. 2022. V. 34. P. 105285.
  17. Li Q.-J., Sheng H., Ma E. Strengthening in multi-principal element alloys with local-chemical-order roughened dislocation pathways // Nature Communications. 2019. V. 10. P. 3564.
  18. Карькин И.Н., Карькина Л.Е., Горностырев Ю.Н. Ближний порядок, формирующийся при отжиге эквиатомного сплава CrMnFeCoNi. Атомистическое МД/МК-моделирование // ФММ. 2023. Т. 124. № 10. С. 971–977.
  19. Shahmir H., Mousavi T., He J.Y., Lu Z.P., Kawasaki M., Langdon T.G. Microstructure and properties of a CoCrFeNiMn high-entropy alloy processed by equal-channel angular pressing // Mater. Sci. Eng. A. 2017. V. 705. P. 411–419.
  20. Stepanov N.D., Shaysultanov D.G., Chernichenko R.S., Yurchenko N.Y., Zherebtsov S.V., Tikhonovsky M.A., Salishchev G.A. Effect of thermomechanical processing on microstructure and mechanical properties of the carbon-containing CoCrFeNiMn high entropy alloy // J. Alloy. Compd. 2017. V. 693. P. 394–405.
  21. Heczel A., Kawasaki M., Labar J.L., Jang J.I., Langdon T.G., Gubicza J. Defect structure and hardness in nanocrystalline CoCrFeMnNi High-Entropy Alloy processed by High-Pressure Torsion // J. Alloy. Compd. 2017. V. 711. P. 143–154.
  22. Hou J., Li Q., Wu C., and Zheng L. Atomic Simulations of Grain Structures and Deformation Behaviors in Nanocrystalline CoCrFeNiMn High-Entropy Alloy // Materials. 2019. V. 12. P. 1010.
  23. Tschopp M.A., Macdowell D.L. Asymmetric tilt grain boundary structure and energy in copper and aluminum // Phil. Mag. 2007. V. 87. P. 3871.
  24. http://lammps.sandia.gov/index.html
  25. Choi W.-M., Kim Y., Seol D., Lee B.-J. Modified embedded-atom method interatomic potentials for the Co–Cr, Co–Fe, Co–Mn, Cr–Mn and Mn–Ni binary systems // Comp. Mater. Sci. 2017. V. 130. P. 121–129.
  26. Choi Won-Mi, Jo Yong Hee, Sohn Seok Su, Lee Sunghak and Lee Byeong-Joo. Understanding the physical metallurgy of the CoCrFeMnNi high-entropy alloy: an atomistic simulation study // npj Computational Materials. 2018. V. 4. P. 1–9.
  27. Schuh B., Mendez-Martin F., Volker B., George E.P., Clemenb H., Pippan R., Hohenwarter A. Mechanical properties, microstructure and thermal stability of a nanocrystalline CoCrFeMnNi high-entropy alloy after severe plastic deformation // Acta Mater. 2015. V. 96. P. 258–268.

Supplementary files

Supplementary Files
Action
1. JATS XML


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».