Effect of Grain Size on the Hydrogen-Induced Ductility Loss of a Multicomponent CoCrFeMnNi Alloy
- Authors: Astafurova E.G.1, Nifontov A.S.1
-
Affiliations:
- Institute of Strength Physics and Materials Science (ISPMS) SB RAS
- Issue: Vol 125, No 11 (2024)
- Pages: 1430-1437
- Section: ПРОЧНОСТЬ И ПЛАСТИЧНОСТЬ
- URL: https://journals.rcsi.science/0015-3230/article/view/284472
- DOI: https://doi.org/10.31857/S0015323024110124
- EDN: https://elibrary.ru/ILWKWY
- ID: 284472
Cite item
Abstract
The effect of electrolytic hydrogenation on the mechanical properties and fracture mechanism of the multicomponent Cantor CoCrFeMnNi alloy of different characteristic grain size has been shown. It has been demonstrated that an increase in the density of grain boundaries enhances the resistance of Cantor alloy to hydrogen-induced embrittlement. The primary factors that influence the formation of brittle surface zones during hydrogen charging and subsequent uniaxial tension of hydrogen-charged samples have been identified, and the micromechanisms of their fracture have been elucidated. An increase in grain boundary density impedes the transportation of hydrogen by dislocations during plastic deformation. This is due to the limited free path of dislocations in a fine-grained structure. However, the thickness of the hydrogen-charged layer formed during hydrogen saturation is not significantly affected by the grain size.
Full Text

About the authors
E. G. Astafurova
Institute of Strength Physics and Materials Science (ISPMS) SB RAS
Author for correspondence.
Email: elena.g.astafurova@ispms.ru
Russian Federation, Tomsk, 634055
A. S. Nifontov
Institute of Strength Physics and Materials Science (ISPMS) SB RAS
Email: elena.g.astafurova@ispms.ru
Russian Federation, Tomsk, 634055
References
- Колачев Б.А. Водородная хрупкость металлов. М.: Металлургия, 1985. 216 с.
- Шрейдер А.В. Водород в металлах. М.: Знание, 1979. 64 с.
- Lynch S. Hydrogen embrittlement phenomena and mechanisms // Corrosion Reviews. 2012. V. 30. № 3–4. P. 105–123.
- Nagumo M. Fundamentals of Hydrogen Embrittlement. Singapore: Springer, 2016. 239 p.
- Рогачев А.С. Структура, стабильность и свойства высокоэнтропийных сплавов // ФММ. 2020. Т. 121. № 8. С. 807–841.
- Miracle D.B., Senkov O.N. A critical review of high entropy alloys and related concepts // Acta Materialia. 2017. V. 122. P. 448–511.
- Cantor B., Chang I.T.H., Knight P., Vincent A.J.B. Microstructural development in equiatomic multicomponent alloys // Mater. Sci. Eng. A. 2004. V. 375–377. P. 213–218.
- Zhao Y., Lee D.-H., Seok M.-Y., Lee J.-A., Phaniraj M.P., Suh J.-Y., Ha H.-Y., Kim J.-Y., Ramamurty U., Jang J.-il. Resistance of CoCrFeMnNi high-entropy alloy to gaseous hydrogen embrittlement // Scripta Mater. 2017. V. 135. P. 54–58.
- Bhadeshia H.K.D.H. Prevention of Hydrogen Embrittlement in Steels // ISIJ International. 2016. V. 56. № 1. P. 24–36.
- Nygren K.E., Bertsch K.M., Wang S., Bei H., Nagao A., Robertson I.M. Hydrogen embrittlement in compositionally complex FeNiCoCrMn FCC solid solution alloy // Curr. Opin. Solid State Mater. Sci. 2018. V. 22. P. 1–7.
- Li X., Yin J., Zhang J., Wang Y., Song X., Zhang Y., Ren X. Hydrogen embrittlement and failure mechanisms of multiprincipal element alloys: A review // J. Mater. Sci. Techn. 2022. V. 122. P. 20–32.
- Ichii K., Koyama M., Tasan C.C., Tsuzaki K. Comparative study of hydrogen embrittlement in stable and metastable high-entropy alloys // Scripta Mater. 2018. V. 150. P. 74–77.
- Koyama M., Ichii K., Tsuzaki K. Grain refinement effect on hydrogen embrittlement resistance of an equiatomic CoCrFeMnNi high-entropy alloy // Int. J. Hydrogen Energy. 2017. V. 42. Ar. Num. 12706–23.
- Koyama M., Wang H., Verma V.K., Tsuzaki K., Akiyama E. Effect of Mn content and grain size on hydrogen embrittlement susceptibility of face-centered cubic high-entropy alloys // Metal. Mater. Trans. A. 2020. V. 51. P. 5612–5616.
- Fu Z.H., Yang B.J., Chen M., Gou G.Q., Chen H. Effect of recrystallization annealing treatment on the hydrogen embrittlement behavior of equimolar CoCrFeMnNi high entropy alloy // Int. J. Hydrog. Energy. 2021. V. 46. P. 6970–6978.
- Салтыков С.А. Стереометрическая Металлография. М.: Металлургия, 1976. 274 с.
- Schneider M., Couzinié J.-P., Shalabi A., Ibrahimkhel F., Ferrari A., Körmann F., Laplanche G. Effect of stacking fault energy on the thickness and dencity of annealing twins in recrystallized FCC medium and high-entropy alloys // Scripta Mater. 2024. V. 240. Ar. Num. 115844.
- Depover T., Laureys A., Escobar D.M.P., Van den Eeckhout E., Wallaert E., Verbeken K. Understanding the interaction between a steel microstructure and hydrogen // Materials. 2018. V. 11. № 5. Ar. Num. 698.
- Abraham D.P., Altstetter C.J. The effect of hydrogen on the yield and flow stress of an austenitic stainless steel // Metallurgical and Materials Transactions A. 1995. V. 26. P. 2849–2858.
- Zhao Y., Park J.-M., Lee D.-H., Song E.J., Suh J.-Y., Ramamurty U., Jang J.-il. Influence of hydrogen charging method on the hydrogen distribution and nanomechanical properties of face-centered cubic high-entropy alloy: A comparative study // Scripta Mater. 2019. V. 168. P. 76–80.
- Panchenko M. Yu., Melnikov E.V., Mikhno A.S., Maier G.G., Astafurov S.V., Moskvina V.A., Reunova K.A., Galchenk N.K., Astafurova E.G. The influence of intergranular and interphase boundaries and δ-ferrite volume fraction on hydrogen embrittlement of high-nitrogen steel // International Journal of Hydrogen Energy. 2021. V. 46. P. 30510–30522.
- Гуртова Д.Ю., Панченко М.Ю., Мельников Е.В., Астапов Д.О., Астафурова Е.Г. Влияние размера зерна на закономерности водородного охрупчивания многокомпонентного сплава (FeCrNiMnCo)99N1 // Frontier Mater. Techn. 2024. в печати.
- Astafurova E., Fortuna A., Melnikov E., Astafurov S. The Effect of Strain Rate on Hydrogen-Assisted Deformation Behavior and Microstructure in AISI 316L Austenitic Stainless Steel // Materials. 2023. V. 16. Ar. Num. 2983.
- Stefano D.D., Mrovec M., Elsӓsser C. First-principles investigation of hydrogen trapping and diffusion at grain boundaries in nickel // Acta Mater. 2015. V. 98. P. 306–312.
Supplementary files
