Influence of cooling rate from the β-region on phase transformations in the Zr–2.5Nb alloy

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The morphological and crystallographic features of two-phase α+β-states in the Zr–2.5Nb alloy formed during cooling from the β-region at different cooling rates (“water”, “air”, “furnace”) were studied using X-ray diffraction analysis and scanning electron microscopy, including orientation analysis using electron backscatter diffraction. In addition to orientation maps (EBSD), the crystallographic analysis used spectra of misorientations of intercrystallite and interphase boundaries, as well as the restoration of high-temperature β-grains using Burgers orientation relationships. It is shown that with significant differences in the morphological features of the structural states caused by the cooling rates, almost the same picture is observed crystallographically: complete coincidence of the spectra of misorientations of intercrystallite (α'/α' and α/α) and interphase (α'/β and α/β) boundaries. X-ray analysis did not record the presence of the β-phase in the alloy structure upon quenching in water, but showed its noticeable amount at lower cooling rates. In this case, the chemical composition of the β-phase is close to the point of invariant transformation (~ 20 at. % Nb). An assumption is made that at all cooling rates, phase transformations are realized by the same mechanism - shear rearrangement of the bcc ↔ hcp lattice, accompanied by directed jumps of individual atoms. It has been confirmed that the observed β-phase is not retained from the high-temperature region, but is released during phase transformations by the shift-shuffling mechanism at previously formed α'/α'- or α/α-boundaries.

Full Text

Restricted Access

About the authors

V. Yu. Yarkov

Ural Federal University named after the First President of Russia B. N. Yeltsin; JSC “Institute of Nuclear Materials”

Email: m.l.lobanov@urfu.ru
Russian Federation, Ekaterinburg, 620002; Zarechny, Sverdlovsk region, 624250

V. I. Pastukhov

Ural Federal University named after the First President of Russia B. N. Yeltsin; JSC “Institute of Nuclear Materials”

Email: m.l.lobanov@urfu.ru
Russian Federation, Ekaterinburg, 620002; Zarechny, Sverdlovsk region, 624250

M. A. Zorina

Ural Federal University named after the First President of Russia B. N. Yeltsin

Email: m.l.lobanov@urfu.ru
Russian Federation, Ekaterinburg, 620002

S. V. Soloveva

Ural Federal University named after the First President of Russia B. N. Yeltsin; JSC “Institute of Nuclear Materials”

Email: m.l.lobanov@urfu.ru
Russian Federation, Ekaterinburg, 620002; Zarechny, Sverdlovsk region, 624250

A. A. Redikultsev

Ural Federal University named after the First President of Russia B. N. Yeltsin

Email: m.l.lobanov@urfu.ru
Russian Federation, Ekaterinburg, 620002

M. L. Lobanov

Ural Federal University named after the First President of Russia B. N. Yeltsin; Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences

Author for correspondence.
Email: m.l.lobanov@urfu.ru
Russian Federation, Ekaterinburg, 620002; Ekaterinburg, 620108

References

  1. Добромыслов А.В., Талуц Н.И. Структура циркония и его сплавов. Екатеринбург, 1997. 230 с.
  2. Дуглас Д. Металловедение циркония. М.: Атомиздат, 1975. 250 с.
  3. Займовский А.С., Никулина А.В., Решетников Н.Г. Циркониевые сплавы в ядерной энергетике. М.: Энергоатомиздат, 1994. 256 с.
  4. Тарараева Е.М., Муравьева Л.С., Иванов О.С. Строение и свойства сплавов для атомной энергетики. М.: Наука, 1973. 138 с.
  5. Шебалдов П.В., Никулина А.В., Агеенкова Л.Е., Кожевникова Н.В. Структура и свойства сплавов циркония с ниобием. М.: ВНИИНМ, 1977. 44 с.
  6. Никулина А.В., Решетников Н.Г., Шебалдов П.В. Технология изготовления канальных труб из сплава Zr-2,5%Nb, установленных в реакторах РБМК // Вопр. атомной науки и техники. Сер. Материаловедение и новые материалы. 1990. Вып. 2(36). C. 46–53.
  7. Ou P., Zhang T., Wang J., Li C., Shao C., Ruan J. Bone response in vivo of Ti-45Zr alloy as dental implant material // J. Mater. Sci.: Materials in Medicine. 2022. V. 33. Р. 47.
  8. Mehjabeen A., Song T., Xu W., Tang H.P., Qian M. Zirconium Alloys for Orthopaedic and Dental Applications // Advanced Eng. Mater. 2018. V. 20. Р. 1800207.
  9. Tang J., Yang H., Qian B., Zheng Y. TWIP-assisted Zr alloys for medical applications: Design strategy, mechanical properties and first biocompatibility assessment // J. Mater. Technol. 2023. V. 184. P. 32–42.
  10. Chopra D., Jayasree A., Guo T., Gulati K. Advancing dental implants: Bioactive and therapeutic modifications of zirconia // Bioactive Mater. 2022. V. 13. P. 161–178.
  11. Adamson R.B., Coleman C.E., Griffiths M. Irradiation Creep and Growth of Zirconium Alloys: A Critical Review // J. Nucl. Mater. 2019. V. 521. P. 167–244.
  12. Idress Y., Yao Z., Kirk M.A., Daymond M.R. In situ study of defect accumulation in zirconium under heavy ion irradiation // J. Nucl. Mater. 2013. V. 433. P. 95–107.
  13. Warwick R.A., Rhys T., Boleininger M., Zilahi G. Dislocation density transients and saturation in irradiated zirconium // Intern. J. of Plasticity. 2024. V. 164. Р. 103590.
  14. Белозерова А.Р., Белозеров С.В., Шамардин В.К. К вопросу моделирования эффектов ядерной трансмутации при исследовании физических свойств циркониевых сплавов // ФММ. 2020. Т. 121. № 6. С. 564–575.
  15. Yagnik S., Garde A. Zirconium alloys for LWR fuel cladding and core internals // Structural Alloys for Nucl. Energy Appl. 2019. P. 247–291.
  16. Betova I., Bojinov M., Karastoyanov V. Long-Term Oxidation of Zirconium Alloy in Simulated Nuclear Reactor Primary Coolant – Experiments and Modeling // Materials. 2023. V. 16. Р. 2577.
  17. Gajowiec G., Bartmanski M., Majkowska-Marzec B. Hydrogen Embrittlement and Oxide Layer Effect in the Cathodically Charged Zircaloy-2 // Materials. 2020. V. 13. Р. 1913.
  18. Jia Y.J., Han W.Z. Mechanisms of Hydride Nucleation, Growth, Reorientation, and Embrittlement in Zirconium: A Review // Materials. 2023. V. 16. Р. 2419.
  19. Motta A.T., Capolungo L., Chen L.Q., Cinbiz M.N., Daymond M.R., Koss D.A., Lacroix E. Hydrogen in zirconium alloys: A review // J. Nucl. Mater. 2019. V. 518. P. 440–460.
  20. Исаенкова М.Г., Перлович Ю.А., Фесенко В.А., Крымская О.А., Крапивка Н.А. Закономерности рекристаллизации прокатанных моно- и поликристаллов циркония и сплава Zr-1% Nb // ФММ. 2014. Т. 115. № 8. С. 807–815.
  21. Isaenkova M., Krymskaya O., Klyukova K., Bogomolova A. Regularities of Changes in the Structure of Different Phases of Deformed Zirconium Alloys as a Result of Raising the Annealing Temperature According to Texture Analysis Data // Metals. 2023. V. 13. Р. 1784.
  22. Некрасова Г.А., Парфенов Б.Г., Пиляев А.С. Производство циркониевых труб для оболочек твэлов за рубежом. М.: ЦНИИатоминформ, 1976. 102 c.
  23. Пиляев А.С., Клыпина Г.П., Семенова. Л.В. Цирконий в атомной промышленности. Выпуск 7. М.: ЦНИИатоминформ, 1981. 64 с.
  24. Bickel G.A., Griffiths M., Douchant A., Douglas S., Woo O.T., Buyers A. Improved Zr-2.5Nb pressure tubes for reduced diametral strain in advanced CANDU reactors // American Society for Testing and Materials. Zirconium in the Nuclear Industry. 2010. V. 1529. Р. 327–348.
  25. Рогачев С.О., Рожнов А.Б., Никулин С.А., Рыбальченко О.В., Горшенков М.В., Чжен В.Г., Добаткин С.В. Влияние режимов кручения под высоким давлением на структуру и упрочнение сплава Zr-1% Nb // ФММ. 2016. Т. 117. № 4. С. 385–391.
  26. Holzer R., Kaden W. Development, and preset status of zircaloy cladding technology for pressurized water reactors in the Federal Republic of Germany. In: Physical metallurgy of reactor fuel elemtns. London, 1975. P. 180.
  27. Tyzack G., Hurst P. SCANUK: a collaborative programme to develop new zirconium cladding alloys // J. Nucl. Mater. 1977. V. 66. P. 163–186.
  28. Lobanov M.L., Yarkov V. Yu., Pastukhov V.I. The Effect of Cooling Rate on Crystallographic Features of Phase Transformations in Zr-2.5Nb // Materials. 2023. V. 16. Р. 3758.
  29. Burgers W.G. On the Process of Transition of the Cubic-Body-Centered Modification into the Hexagonal-Close-Packed Modification of Zirconium // Physica. 1934. V. 1. P. 561–586.
  30. Кириченко В.Г., Азаренков Н.А. Ядерно-физическое металловедение сплавов циркония. Харьков: ХНУ им. В.Н. Каразина, 2012. 122 с.
  31. Горностырев Ю.Н., Кацнельсон М.И., Кузнецов А.Р., Трефилов А.В. Моделирование мартенситных превращений в кристаллах bcc Zr с дислокациями различных типов // ФММ. 2001. Т. 91. № 3. С. 244–251.
  32. Morris J.R., Ho K.M. Molecular dynamic simulation of a homogeneous bcc -> hcp transition // Phys. Rev. B. 2001. V. 63. Р. 224116.
  33. Gornostyrev Yu.N., Katsnelson M.I., Kuznetsov A.R. Modeling of Martensitic Transformations in a Crystal with Different Types of Dislocations in Bcc-Zr // JETPh Lett. 1999. V. 70. P. 380–384.
  34. Liang S.H., Li J.H., Liu B.X. Solid-State Amorphization of an Immiscible Nb–Zr System Simulated by Molecular Dynamics // Comput. Mater. Sci. 2008. V. 42. P. 550–557.
  35. Heiming A., Petry W., Trampenau J., Alba M., Herzig C., Schober H.R., Vogl G. Phonon Dispersion of the Bcc Phase of Group-IV Metals. II. Bcc Zirconium, a Model Case of Dynamical Precursors of Martensitic Transitions // Phys. Rev. B. Condens. Matter. 1991. V. 43. Р. 10948.
  36. Blank V.D., Kulnitskiy B.A. The Habit Plane of Martensite at BCC-HCP Phase Transformation // Scr. Mater. 1997. V. 37. P. 373–376.
  37. Davis A.E., Donoghue J., Kennedy J.R., Byres N., Prangnell P.B. In-Situ Observation of Single Variant α Colony Formation in Ti-6Al-4V // Acta Mater. 2021. V. 220. P. 117315.
  38. Tomida T., Vogel S.C., Onuki Y., Sato S. Texture Memory in Hexagonal Metals and Its Mechanism // Metals (Basel). 2021. V. 11. P. 1653.
  39. Лобанов М.Л., Пастухов В.И., Редикульцев А.А. Влияние специальных границ на γ→α-превращение в аустенитной нержавеющей стали // ФММ. 2021. Т. 122. № 4. С. 424–430.
  40. Lobanov M.L., Zorina M.A., Reznik P.L., Pastukhov V.I., Redikultsev A.A., Danilov S.V. Specific Features of Crystallographic Texture Formation in BCC-FCC Transformation in Extruded Brass // J. Alloys Compd. 2021. V. 882. P. 160231.
  41. Nolze G. Tetragonality mapping of martensite in a high-carbon steel by EBSD // Mater. Character. 2021. V. 175. P. 111040.
  42. Zisman A. Extraction of prior grain boundaries from interfaces of martensite based on particular statistics for inter-variant disorientations // Letters Mater. 2018. V. 8. P. 436–441.
  43. Cluff S. Crystallographic Reconstruction of Parent Austenite Twin Boundaries in a Lath Martensitic Steel / IOP Conf. Ser.: Mater. Sci. Eng. IOP Publishing, 2018. V. 375. P. 012012.
  44. Gomes E., Kestens L.A.I. Fully automated orientation relationship calculation and prior austenite reconstruction by random walk clustering // IOP Conf. Ser.: Mater. Sci. Eng. IOP Publishing, 2015. V. 82. P. 012059.
  45. Huang C.-Y., Ni H.-C., Yen H.-W. New protocol for orientation reconstruction from martensite to austenite in steels // Materiala. 2020. V. 9. P. 100554.
  46. Christian J.W. The Theory of Transformations in Metals and Alloys. Pergamon. 2002. P. 1216.
  47. Горелик С.С., Скаков Ю.А., Расторгуев Л.Н. Рентгенографический и электронно-оптический анализ.: Учеб. Пособие для вузов. М.: МИСИС, 2002. 360 с.
  48. Dobromyslov A.V., Taluts N.I., Kazantseva N.V., Kozlov E.A. Formation of adiabatic shear bands and instability of plastic flow in Zr and Zr-Nb alloys in spherical stress waves // Scripta. Mater. 2000. V. 42. P. 61–71.
  49. Добромыслов А.В. Определение границ области существования метастабильной ω-фазы в сплавах титана и циркония // ФММ. 2023. Т. 124. № 12. С. 1220–1229.
  50. Рыкова Е.А., Хунджуа А.Г. Количественный фазовый анализ при исследовании распада β-твердого раствора в ряде сплавов на основе титана и циркония // Вестник Московского ун-та. 2004. № 2. С. 34–37.
  51. Van Bohemen S.M.C., Kamp A., Petrov R.H., Kestens L.A.I., Sietsma J. Nucleation and Variant Selection of Secondary α Plates in a β Ti Alloy // Acta Mater. 2008. V. 56. P. 5907–5914.
  52. Shi R., Dixit V., Viswanathan G.B., Fraser H.L., Wang Y. Experimental Assessment of Variant Selection Rules for Grain Boundary α in Titanium Alloys // Acta Mater. 2016. V. 102. P. 197–211.
  53. Farabi E., Tari V., Hodgson P.D., Rohrer G.S., Beladi H. The Role of Phase Transformation Mechanism on the Grain Boundary Network in a Commercially Pure Titanium // Mater. Charact. 2020. V. 169. P. 110640.
  54. Lobanov M.L., Zorina M.A., Karabanalov M.S., Urtsev V.N., Redikultsev A.A. Phase Transformation Crystallography in Pipeline HSLA Steel after TMCP // Metals. 2023. V. 13. P. 1121.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Microstructure of the Zr–2.5Nb alloy in the initial state and after different cooling modes (SEM, reflected electrons): a, b – initial state; c, d – cooling in water; d, f – in air; g, h – in a furnace.

Download (65KB)
3. Fig. 2. Orientation analysis of the initial state of the Zr–2.5Nb alloy: a – contrast in backscattered electrons; b – map of the main orientations in the colors of the inverse pole figure.

Download (30KB)
4. Fig. 3. Orientation analysis of the structure of the Zr–2.5Nb alloy after different cooling modes: reconstruction of high-temperature grains of the β-phase (a, d, g), contrast of the diffraction of backscattered electrons (b, d, h), maps of the main orientations of the α-phase crystallites (c, f, i); a, b, c – water; d, e, f – air; g, h, i – furnace.

Download (103KB)
5. Fig. 4. Spectra of the angles of misorientation of α'(α)-phase crystallites (a, c, d) and the angles of deviation of the interphase boundaries α'(α)/β from the Burgers OR (b, d, e): a, b – after cooling in water; c, d – after cooling in air; d, e – after cooling in a furnace.

Download (66KB)
6. Fig. 5. Diffraction patterns of Zr–2.5Nb alloy samples after different cooling modes: a – in the initial state; b – in water; c – in air; d – in a furnace.

Download (70KB)


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».