The high-temperature in situ synchrotron study of structural-phase transformations in 3D-printed Ti–6Al–4V and Ti–5Al–3Mo–V titanium alloys
- 作者: Lobova T.A.1, Panin A.V.1,2, Perevalova O.B.1, Syrtanov M.S.2
-
隶属关系:
- Institute of Strength Physics and Materials Science SB RAS
- National Research Tomsk Polytechnic University
- 期: 卷 125, 编号 9 (2024)
- 页面: 1163-1170
- 栏目: СТРУКТУРА, ФАЗОВЫЕ ПРЕВРАЩЕНИЯ И ДИФФУЗИЯ
- URL: https://journals.rcsi.science/0015-3230/article/view/281261
- DOI: https://doi.org/10.31857/S0015323024090108
- EDN: https://elibrary.ru/KENXBE
- ID: 281261
如何引用文章
详细
An wire-feed electron beam additive manufactoring has been used to obtain the samples of Ti‒6Al–4V and Ti–5Al–3Mo–V titanium alloys. Optical, scanning, and transmission electron microscopies have been used to show that the microstructure of the 3D printed samples of Ti–6Al–4V and Ti–5Al–3Mo–V alloys consists of columnar primary grains of the β-phase, within which martensitic αʹ plates are formed. The high-temperature synchrotron X-ray diffraction technique was used to show the evolution of αʹ → α + β +αʹʹ transformations in Ti–Al–V and Ti–Al–Mo-V titanium alloys, which causes an increase in the content of residual β-phase and the formation of orthorhombic αʹʹ-phase. The decomposition of the αʹ-phase in Ti–6Al–4V and Ti–5Al–3Mo–V samples started at temperatures of 600 and 400°C respectively. Intensive oxidation of titanium alloys in a the high-temperature chamber at temperatures above 900°C resulted in a decrease in the volume fraction of β- and αʹʹ-phases, as well as inhibition of polymorphic α→β transformation.
全文:

作者简介
T. Lobova
Institute of Strength Physics and Materials Science SB RAS
编辑信件的主要联系方式.
Email: tal@ispms.ru
俄罗斯联邦, Tomsk, 634055
A. Panin
Institute of Strength Physics and Materials Science SB RAS; National Research Tomsk Polytechnic University
Email: tal@ispms.ru
俄罗斯联邦, Tomsk, 634055; Tomsk, 634050
O. Perevalova
Institute of Strength Physics and Materials Science SB RAS
Email: tal@ispms.ru
俄罗斯联邦, Tomsk, 634055
M. Syrtanov
National Research Tomsk Polytechnic University
Email: tal@ispms.ru
俄罗斯联邦, Tomsk, 634050
参考
- Veiga C., Davim J.P., Lourerio A. Properties and applications of titanium alloys: a brief review // Rev. Adv. Mater. Sci. 2012. V. 32. P. 133–148.
- Williams J.C., Boyer R.R. Opportunities and Issues in the Application of Titanium Alloys for Aerospace Components // Metals. 2020. 10(6). P. 705.
- Vafadar A., Guzzomi F., Rassau A., Hayward K. Advances in Metal Additive Manufacturing: A Review of Common Processes, Industrial Applications, and Current Challenges // Appl. Sci. 2021. 11(13). P. 1213.
- Wanjara P., Watanabe K., Formanoir C., Yang Q., Bescond C., Godet S., Brochu M., Nezaki K., Gholipour J., Patnaik P. Titanium Alloy Repair with Wire-Feed Electron Beam Additive Manufacturing Technology // Adv. Mater. Sci. Eng. 2019. 3979471. P. 23.
- Ding D., Pan Z., Cuiuri D., Li H. Wire-feed additive manufacturing of metal components: technologies, developments and future interests // Int. J. Adv. Manuf. Technol. 2015. V. 81. P. 465–481.
- Колубаев Е.А., Рубцов В.Е., Чумаевский А.В., Астафурова Е.Г. Научные подходы к микро-, мезо- и макроструктурному дизайну объемных металлических и полиметаллических материалов с использованием метода электронно-лучевого аддитивного производства // Физ. мезомех. 2022. Т. 25. № 4. С. 5–18.
- Xu J., Zhu J., Fan J., Zhou Q., Peng Y., Guo S. Microstructure and mechanical properties of Ti-6Al-4V alloy fabricated using electron beam freeform fabrication // Vacuum. 2019. 167. P. 364–373.
- Present S.J., Taminger K.M., Domack C.S., Hemker K.J. The Inhomogeneous Microstructure and Mechanical Properties of Ti-6Al-4V Additively Manufactured by Electron Beam Freeform Fabrication // Metall. Mater. Trans. A. 2023. V. 54. P. 312–319.
- Ter Haar G.M., Becker T.H. Selective Laser Melting Produced Ti-6Al-4V: Post-Process Heat Treatments to Achieve Superior Tensile Properties // Materials. 2018. V. 11(1). P. 146.
- Zhang C., Zou D., Mazur M., Mo J.P.T., Li G., Ding S. The State of the Art in Machining Additively Manufactured Titanium Alloy Ti-6Al-4V // Materials. 2023. 16. P. 2583.
- Панин А.В., Казаченок М.С., Казанцева Л.А., Перевалова О.Б., Мартынов С.А. Изменение микроструктуры и фазового состава 3D-напечатанного сплава Ti-6Al-4V при механическом нагружении // ФММ. 2023. Т. 124. № 2. С. 226–232.
- Malinov S., Sha W., Guo Z., Tang C.C., Long A.E. Synchrotron X-ray diffraction study of the phase transformations in titanium alloys // Mater. Charact. 2002. V. 48. P. 279–295.
- Perevalova O.B., Syrtanov M.S. In situ study of phase transformations in electron beam additive manufactured Ti-6Al-4V titanium alloy by high temperature synchrotron X-ray diffraction and TEM // J. Alloys Compd. 2022. V. 917. P. 165463.
- Perevalova O.B., Panin A.V., Syrtanov M.S. In Situ Synchrotron Study of the Phase Transformations in Ti-5.7Al-1.6V-3Mo Titanium Alloy at High Temperature // J. Mater. Eng. Perform. 2023.
- Gornakova A.S., Straumal A.B., Khodos I.I., Gnesin I.B., Mazilkin A.A., Afonikova N.S., Straumal B.B. Effect of composition, annealing temperature, and high pressure torsion on structure and hardness of Ti–V and Ti–V–Al alloys // J. Appl. Phys. 2019. V. 125. P. 082522.
- Wang C.H., Yang C.D., Liu M., Li X., Hu P.F., Russell A.M., Cao G.H. Martensitic microstructures and mechanical properties of as-quenched metastable β-type Ti–Mo alloys // J. Mater. Sci. 2016. V. 51. P. 6886–6896.
- Lütjering G., Williams J.C. Titanium. 2nd ed. Springer. Berlin. Heidelberg. 2007. P. 27–31.
- Frary M., Abkowitz S., Abkowitz S.M., Dunand D.C. Microstructure and mechanical properties of Ti/W and Ti-6Al-4V/W composites fabricated by powder-metallurgy // Mater. Sci. Eng.: A. 2003. V. 344. P. 103–112.
- Bignon M., Bertrand E., Tancret F., Rivera-Díaz-del-Castillo P.E.J. Modelling martensitic transformation in titanium alloys: The influence of temperature and deformation // Materialia. 2019. V. 7. P. 100382.
- Kumar M.S., Begum S.R., Vasumathi M., Nguyen С.C., Le Q.V. Influence of molybdenum content on the microstructure of spark plasma sintered titanium alloys // Synth. Sinter. 2021. V. 1(1). P. 41–47.
补充文件
