Surface modification of Zr–Nb alloy by nanosecond pulse laser processing
- Authors: Petrova A.N.1, Brodova I.G.1, Astafiev V.V.1, Rasposienko D.Y.1, Kuryshev A.O.1, Balakhnin A.N.2, Uvarov S.V.2, Naimark O.B.2
-
Affiliations:
- Mikheev Institute of Metal Physics, Ural Branch of the Russian Academy of Sciences
- Institute of Continuous Media Mechanics, Ural Branch of the Russian Academy of Sciences
- Issue: Vol 125, No 6 (2024)
- Pages: 710-720
- Section: СТРУКТУРА, ФАЗОВЫЕ ПРЕВРАЩЕНИЯ И ДИФФУЗИЯ
- URL: https://journals.rcsi.science/0015-3230/article/view/274768
- DOI: https://doi.org/10.31857/S0015323024060082
- EDN: https://elibrary.ru/WQLFKL
- ID: 274768
Cite item
Abstract
The effect of nanosecond pulse laser processing of the Zr–1% Nb alloy surface of specimens in the annealed state and after their two-stage deformation treatment by abc-pressing and rolling has been investigated. The morphology of the modified surface of specimens is described using optical and scanning microscopy. Furthermore, the microrelief formed as a result of vaporization and melting of a thin layer of material subjected to laser processing is evaluated quantitatively. Durometric measurements were conducted to ascertain the hardness of the near-surface layer and the impact of laser-induced shock waves on its hardness. The electron backscattering diffraction (EBSD) analysis data were employed to describe the structure of the specimens in the near-surface layer. The influence of the initial grain size on the quality of the modified surface, as well as on the depth and hardening of the near-surface layers has been established.
Keywords
About the authors
A. N. Petrova
Mikheev Institute of Metal Physics, Ural Branch of the Russian Academy of Sciences
Author for correspondence.
Email: petrova@imp.uran.ru
Russian Federation, Ekaterinburg, 620108
I. G. Brodova
Mikheev Institute of Metal Physics, Ural Branch of the Russian Academy of Sciences
Email: petrova@imp.uran.ru
Russian Federation, Ekaterinburg, 620108
V. V. Astafiev
Mikheev Institute of Metal Physics, Ural Branch of the Russian Academy of Sciences
Email: petrova@imp.uran.ru
Russian Federation, Ekaterinburg, 620108
D. Y. Rasposienko
Mikheev Institute of Metal Physics, Ural Branch of the Russian Academy of Sciences
Email: petrova@imp.uran.ru
Russian Federation, Ekaterinburg, 620108
A. O. Kuryshev
Mikheev Institute of Metal Physics, Ural Branch of the Russian Academy of Sciences
Email: petrova@imp.uran.ru
Russian Federation, Ekaterinburg, 620108
A. N. Balakhnin
Institute of Continuous Media Mechanics, Ural Branch of the Russian Academy of Sciences
Email: petrova@imp.uran.ru
Russian Federation, Perm, 614013
S. V. Uvarov
Institute of Continuous Media Mechanics, Ural Branch of the Russian Academy of Sciences
Email: petrova@imp.uran.ru
Russian Federation, Perm, 614013
O. B. Naimark
Institute of Continuous Media Mechanics, Ural Branch of the Russian Academy of Sciences
Email: petrova@imp.uran.ru
Russian Federation, Perm, 614013
References
- Montross C.S., Tao Wei, Lin Ye, Graham Clark, Yiu-Wing Mai. Laser shock processing and its effects on microstructure and properties of metal alloys: a review // Intern. J. Fatigue. 2002. V. 24. P. 1021–1036.
- Masse G., Barreau J. Surface modification by laser induced shock waves // Surf. Eng. 1995. V. 11. P. 131–132.
- Dane C., Hackel L., Daly J. Shot peening with laser // Adv. Mater. Process. 1998. V. 153. P. 37–48.
- Zhang Y., You J., Lu J., Cui C., Jiang, Y., Ren X. Effects of laser shock processing on stress corrosion cracking susceptibility of AZ31B magnesium alloy // Surf. Coat. Technol. 2010. V. 204. P. 3947–3953.
- Zhang H., Yu Ch. Laser shock processing of 2024-T62 aluminum alloy // Mater. Sci. Eng.: A. 1998. V. 257. № 2. P. 322–327.
- Montross C.S., Florea V., Swain M.V. Influence of coatings on sub-surface mechanical properties of laser peened 2011-T3 aluminum // J. Mater. Sci. 2001. V. 36. P. 1801–1807.
- Zhou L., Li Y.H., He W.F., Wang X.D., Li Q.P. Laser shock processing of Ni-base superalloy and high cycle fatigue properties // Mater. Sci. Forum. 2011. V. 697–698. P. 235–238.
- Banas G, Elsayed-Ali H.E., Lawrence F.V., Rigsbee J.M. Laser shock-induced mechanical and microstructural modification of welded maraging steel // J. Appl. Phys. 1990. V. 67. P. 2380–2384.
- Song Sh., Yizhou Sh., Zonghui Ch., Weibiao X., Zhaoru H., Shuangshuang S., Weilan L. Laser shock peening regulating residual stress for fatigue life extension of 30CrMnSiNi2A high-strength steel // Optics & Laser Technology. 2023. V. 169. P. 110094.
- Колобов Ю.Р., Манохин С.С., Бетехтин В.И., Кадомцев А.Г., Нарыкова М.В., Одинцова Г.В., Храмов Г.В. Исследование влияния обработки лазерными импульсами наносекундной длительности на микроструктуру и сопротивление усталости технически чистого титана // Письма в ЖТФ. 2022. Т. 48. № 2. С. 15–19.
- Clauer A.H. Laser shock peening for fatigue resistance // Surface performance of titanium. Warrendale (PA): TMS. 1996. P. 217–230.
- Ruschau J.J., John R., Thompson S.R., Nicholas T. Fatigue crack nucleation and growth rate behaviour of laser shock peened titanium // International Journal of Fatigue. 1999. V. 21. P. 199–209.
- Kamkarrad H., Narayanswamy S., Tao X.S. Feasibility study of high-repetition rate laser shock peening of biodegradable magnesium alloys // Int. Adv. Manuf. Technol. 2014. V. 74. P. 1237–1245.
- Hatamleh O.A. Comprehensive investigation on the effects of laser and shot peening on fatigue crack growth in friction stir welded AA 2195 joints // Int. J. Fatigue. 2009. V. 31. P. 974–988.
- Trdan U., Grum J. Evaluation of corrosion resistance of AA6082-T651 aluminium alloy after laser shock peening by means of cyclic polarisation and ElS methods // Corros. Sci. 2012. V. 59. P. 324–333.
- Zhang X.C., Zhang Y.K., Lu J.Z., Xuan F.Z., Wang Z.D., Tu S.T. Improvement of fatigue life of Ti-6Al-4V alloy by laser shock peening // Materials Science and Engineering: A. 2010. V. 527. № 15. P. 3411–3415.
- Veiko V.P., Karlagina Yu.Yu., Egorova E.E., Zernitskaya E.A., Kuznetsova D.S., Elagin V.V., Zagaynova E.V., Odintsova G.V. In vitro investigation of laser-induced microgrooves on titanium surface // J. Phys.: Conf. Ser. 2020. V. 1571. P. 012010.
- Li Zh.Y., Guoa X.W., Yua Sh.J., Ninga Ch.M., Jiaob Y.J., Caia Zh.B. Influence of laser shock peening on surface characteristics and corrosion behavior of zirconium alloy // Mater. Characteriz. 2023. V. 206. P. 113387.
- Eroshenko A.Yu., Mairambekova A.M., Sharkeev Yu.P., Kovalevskaya Zh.G., Khimich M.A. Structure, phase composition and mechanical properties in bioinert zirconium-based alloy after severe plastic deformation // Letters Mater. 2017. Т. 7. № 4. P. 469–472.
Supplementary files
