A study of rare earth intermetallide La0.73Dy0.27Mn2Si2 by Raman spectroscopy, magnetic force microscopy and resonance photoemission spectroscopy
- Authors: Korkh Y.V.1, Ponomareva E.A.1, Grebennikov V.I.1, Gerasimov E.G.1,2, Chumakov R.G.3, Mushnikov N.V.1,2, Kuznetsova T.V.1,2
-
Affiliations:
- Miheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences
- Ural Federal University named after the First President of Russia B. N. Yeltsin
- National Research Center "Kurchatov Institute"
- Issue: Vol 125, No 5 (2024)
- Pages: 529-537
- Section: ЭЛЕКТРИЧЕСКИЕ И МАГНИТНЫЕ СВОЙСТВА
- URL: https://journals.rcsi.science/0015-3230/article/view/272572
- DOI: https://doi.org/10.31857/S0015323024050064
- EDN: https://elibrary.ru/XWWZJS
- ID: 272572
Cite item
Abstract
The features of the magnetic microstructure of La0.73Dy0.27Mn2Si2 at 293 K have been visualized by atomic force and magnetic force microscopy. Magnetic force images reveal the presence of low-contrast magnetic domains. The change of Raman spectral characteristics of light scattering in the process of cooling La0.73Dy0.27Mn2Si2 to a temperature of 263 K is experimentally detected. The electronic structure of La0.73Dy0.27Mn2Si2 is investigated by resonance photoemission spectroscopy with the use of the synchrotron radiation. Resonances at 3d and 4d levels of electronic structure show different properties of valence electrons. Using the 3d–4f (M4.5 absorption edge) resonance, the distribution of 4f states of dysprosium in the valence band is determined. Photoemission upon the giant Dy 4d–4f (N4.5 absorption edge) resonance is determined by the contribution of all states in the valence band due to the sudden involvement of the Coulomb interaction. The energies of La and 4f levels of La, the 4f level of Dy, and the 3d level of Mn in the valence band have been determined.
Full Text

About the authors
Yu. V. Korkh
Miheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences
Author for correspondence.
Email: korkh@imp.uran.ru
Russian Federation, 620108, Ekaterinburg
E. A. Ponomareva
Miheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences
Email: korkh@imp.uran.ru
Russian Federation, 620108, Ekaterinburg
V. I. Grebennikov
Miheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences
Email: korkh@imp.uran.ru
Russian Federation, 620108, Ekaterinburg
E. G. Gerasimov
Miheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences; Ural Federal University named after the First President of Russia B. N. Yeltsin
Email: korkh@imp.uran.ru
Russian Federation, 620108, Ekaterinburg; 620002, Ekaterinburg
R. G. Chumakov
National Research Center "Kurchatov Institute"
Email: korkh@imp.uran.ru
Russian Federation, 123182, Moscow
N. V. Mushnikov
Miheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences; Ural Federal University named after the First President of Russia B. N. Yeltsin
Email: korkh@imp.uran.ru
Russian Federation, 620108, Ekaterinburg; 620002, Ekaterinburg
T. V. Kuznetsova
Miheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences; Ural Federal University named after the First President of Russia B. N. Yeltsin
Email: korkh@imp.uran.ru
Russian Federation, 620108, Ekaterinburg; 620002, Ekaterinburg
References
- Szytula A. Handbook of Magnetic Materials. 1991. V. 6, ed. K. H.J. Buschow. Amsterdam: Elsevier.
- Fujii H., Okamoto T., Shigeoka T. and Iwata N. Reentrant ferromagnetism observed in SmMn2Ge2 // Solid State Commun. 1985. V. 53. № 8. P. 715–717.
- Gerasimov E.G., Mushnikov N.V. and Goto T. Pressure effect on magnetic phase transitions in La0.75Sm0.25Mn2Si2 // Phys. Rev. B. 2005. V. 72. № 6. P. 064446.
- Kuznetsova T.V., Korkh Y.V., Grebennikov V.I., et al. Investigation of Electronic States and Magnetic Domain Structure of La1 – xSmxMn2Si2 (x = 0, 0.25) Layered Intermetallic Compounds by Resonant Photoemission Spectroscopy and Magnetic Force Microscopy // Phys. Met. Metal. 2022. V. 123. P. 451–458.
- Gerasimov E.G., Kurkin M.I., Korolyov A.V., Gaviko V.S. Magnetic anisotropy and ferro-antiferromagnetic phase transition in LaMn2Si2 // Phys. B. 2002. V. 322. P. 297–305.
- Mushnikov N.V., Gerasimov E.G., Terentev P.B., Gaviko V.S. Magnetic structures and magnetic phase transitions in RMn2Si2 // AIP Advances. 2018. V. 8. P. 101411.
- Dieing T., Hollricher O., Toporski J. (ed.). Confocal Raman microscopy. Springer, 2011. Т. 158.
- Kumar C.S. S. R. (ed.). Raman spectroscopy for nanomaterials characterization. Springer Science & Business Media, 2012.
- Schwarz A., Wiesendanger R. Magnetic sensitive force microscopy // Nano Today. 2008. V. 3. Issues 1–2. P. 28–39.
- Kazakova O., Puttock R., Barton C., Corte-León H., Jaafar M., Neu V., Asenjo A. Frontiers of magnetic force microscopy // J. Appl. Phys. 2019. V. 125. P. 060901.
- Cheong S.-W., Fiebig M., Wu W., Chapon L., Kiryukhin V. Seeing is believing: Visualization of antiferromagnetic domains // NPJ Quantum Mater. 2020. V. 5. № 3.
- Gerasimov E.G., Dorofeev Yu.A., Pirogov A.N., Gaviko V.S. and Mushnikov N.V. Magnetic phase transitions in La1-xDyxMn2Si2 (0 ≤ x ≤ 1) compounds // Journal of Physics: Conference Series. 2010. V. 200. 032018.
- Lebedev A.M., Menshikov K.A., Nazin V.G., Stankevich V.G., Tsetlin M.B., Chumakov R.G. NanoPES Photoelectron Beamline of the Kurchatov Synchrotron // Radiation Source Journal of Surface Investigation. 2021. V. 15(5). P. 1039.
- Yamanaka S., Kajiyama M., Sivakumar S.N., and Fukuoka H. Strong electron-phonon coupling and enhanced phonon Grüneisen parameters in valence-fluctuating metal EuPd2Si2 // High Press. Res. 2004. V. 24. P. 481.
- Cooper S.L., Klein M.V., Fisk Z., and Smith J.L. Raman scattering study of the electronic and vibrational excitations in CeCu2Si2 // Physical Review B. 1986. V. 34(9). P. 6235.
- Antal A., Knoblauch T., Singh Y., Gegenwart P., Wu D., and Dressel M. Optical properties of the iron-pnictide analog BaMn2As2 // Phys. Rev. B. 2012. V. 86 (1). P. 014506.
- Abrashev M.V., Todorov N.D., Geshev J. Raman spectra of R2O3 (R – Rare earth) sesquioxides with C-type bixbyite crystal structure: A comparative study // J. Appl. Phys. 2014. V. 116. № 10. P. 103101.
- Iliev M.N., Abrashev M.V., Laverdière J., Jandl S., Gospodinov M.M., Wang Y.Q., and Sun Y.Y. Distortion-dependent Raman spectra and mode mixing in RMnO3 perovskites (R= La, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Y) // Phys. Rev. B. 2006. V. 73(6). P. 064302.
- Jinqiu Y.U., Lei C.U. I., Huaqiang H.E., Shihong Y.A. N., Yunsheng, H. U., Hao W.U. Raman spectra of RE2O3 (RE= Eu, Gd, Dy, Ho, Er, Tm, Yb, Lu, Sc and Y): laser-excited luminescence and trace impurity analysis // J. Rare Earths. 2014. V. 32(1). P. 1–4.
- Borowicz P., Latek M., Rzodkiewicz W., Łaszcz A., Czerwinski A., and Ratajczak J. Deep-ultraviolet Raman investigation of silicon oxide: thin film on silicon substrate versus bulk material // Advances in Natural Sciences: Nanoscience and Nanotechnology. 2012. V. 3(4). P. 045003.
- Silly M.G., Charra F., Lux F., Lemercier G., Sirotti F. The electronic properties of mixed valence hydrated uropiumc hloride thin film // Phys. Chem. Chem. Phys. 2015. V. 17. P. 18403.
Supplementary files
