Mechanical Properties of High Entropy Alloys Based on Rare Earth Elements with Yttrium and Scandium

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Abstract

The high-entropy alloys GdTbDyHoSc and GdTbDyHoY having equiatomic composition are considered as promising materials for magnetic cold generators. The results of the alloys structure and chemical composition investigation are presented in this paper. The solidus and liquidus temperatures of the alloys under investigation were determined by the method of differential scanning calorimetry. Based on these data, an experimental mode of thermocyclic treatment was selected. There were no signs of alloys destruction after five cycles testing for heat resistance in the following regime: 15 min exposition at 1073 K (~0.6 of the melting temperature) and subsequent quenching in room temperature water. It was found that the applied heat treatment led to an increase in the hardness of the alloys by 2–3 times and a decrease in wear resistance by 4–40 times, depending on the composition of the alloys and the number of heat treatment cycles. A significant change in the properties of alloys is associated with the formation of oxides of the REM2O3 type not only on the surface of the alloys, but also in their volume, which is due to the high chemical activity of rare earth metals (REM). The presented data will be useful for the development of modes of thermal and thermomechanical processing of various alloys.

Авторлар туралы

I. Sipatov

Institute of Metallurgy of the Ural Branch of the Russian Academy of Sciences

Хат алмасуға жауапты Автор.
Email: ivan.sipatov@gmail.com
Russia, 620016, Ekaterinburg

O. Korolev

Institute of Metallurgy of the Ural Branch of the Russian Academy of Sciences

Email: ivan.sipatov@gmail.com
Russia, 620016, Ekaterinburg

E. Ignatieva

Institute of Metallurgy of the Ural Branch of the Russian Academy of Sciences

Email: ivan.sipatov@gmail.com
Russia, 620016, Ekaterinburg

L. Marshuk

Institute of Metallurgy of the Ural Branch of the Russian Academy of Sciences

Email: ivan.sipatov@gmail.com
Russia, 620016, Ekaterinburg

B. Gelchinskiy

Institute of Metallurgy of the Ural Branch of the Russian Academy of Sciences

Email: ivan.sipatov@gmail.com
Russia, 620016, Ekaterinburg

A. Rempel

Institute of Metallurgy of the Ural Branch of the Russian Academy of Sciences

Email: ivan.sipatov@gmail.com
Russia, 620016, Ekaterinburg

Әдебиет тізімі

  1. Moschetti M., Xu A., Schuh B., Hohenwarter A., Couzinié J.P., Kruzic J.J., Bhattacharyya D., Gludovatz B. On the room-temperature mechanical properties of an ion-irradiated TiZrNbHfTa refractory high entropy alloy // JOM. 2020. V. 72. P. 130–138.
  2. Rogachev A.S. Structure, stability, and properties of high-entropy alloys // Phys. Met. Metallogr. 2020. V. 121. P. 733–764.
  3. Salishchev G.A., Tikhonovsky M.A., Shaysultanov D.G., Stepanov N.D., Kuznetsov A.V., Kolodiy I.V., Tortika A.S., Senkov O.N. Effect of Mn and M on structure and mechanical properties of high-entropy alloys based on CoCrFeNi system // J. Alloys Compd. 2014. V. 591. P. 11–21.
  4. Uporov S.A., Ryltsev R.E., Sidorov V.A., Estemirova S.K., Sterkhov E.V., Balyakin I.A., Chtchelkatchev N.M. Pressure effects on electronic structure and electrical conductivity of TiZrHfNb high-entropy alloy // Intermetallics. 2022. V. 140. P. 107394.
  5. Ishizu N., Kitagawa J. New high-entropy alloy superconductor Hf21Nb25Ti15V15Zr24 // Results Phys. 2019. V. 13. P. 102275.
  6. LuŽnik J., KoŽelj P., Vrtnik S., Jelen A., Jagličić Z., Meden A., Feuerbacher M., Dolinšek J. Complex magnetism of Ho–Dy–Y–Gd–Tb hexagonal high-entropy alloy // Phys. Rev. B – Condens. Matter. Mater. Phys. 2015. V. 92. P. 224201.
  7. Lu S.F., Ma L., Wang J., Du Y.S., Li L., Zhao J.T., Rao G.H. Effect of configuration entropy on magnetocaloric effect of rare earth high-entropy alloy // J. Alloys Compd. 2021. V. 874. P. 159918.
  8. Sleiman S., Huot J. Effect of particle size, pressure and temperature on the activation process of hydrogen absorption in TiVZrHfNb high entropy alloy // J. Alloys Compd. 2021. V. 861. P. 158615.
  9. Nygård M.M., Ek G., Karlsson D., Sahlberg M., Sørby M.H., Hauback B.C. Hydrogen storage in high-entropy alloys with varying degree of local lattice strain // Int. J. Hydrogen Energy. 2019. V. 44. P. 29140–29149.
  10. Uporov S., Bykov V., Pryanichnikov S., Shubin A., Uporova N. Effect of synthesis route on structure and properties of AlCoCrFeNi high-entropy alloy // Intermetallics. 2017. V. 83. P. 1–8.
  11. Bracq G., Laurent-Brocq M., Perrière L., Pirès R., Joubert J.M., Guillot I. The fcc solid solution stability in the Co–Cr–Fe–Mn–Ni multi-component system // Acta Mater. 2017. V. 128. P. 327–336.
  12. Sheikh S., Mao H., Guo S. Predicting solid solubility in CoCrFeNiMx (M = 4d transition metal) high-entropy alloys // J. Appl. Phys. 2017. V. 121. P. 194903.
  13. Acet M. Inducing strong magnetism in Cr20Mn20Fe20Co20Ni20 high-entropy alloys by exploiting its anti-Invar property // AIP Adv. 2019. V. 9. P. 095037.
  14. Takeuchi A., Amiya K., Wada T., Yubuta K., Zhang W. High-entropy alloys with a hexagonal close-packed structure designed by equi-atomic alloy strategy and binary phase diagrams // JOM. 2014. V. 66. P. 1984–1992.
  15. Feuerbacher M., Heidelmann M., Thomas C. Hexagonal high-entropy alloys // Mater. Res. Lett. 2014. V. 3. P. 1–6.
  16. Jelen A., Jang J.H., Oh J., Kim H.J., Meden A., Vrtnik S., Feuerbacher M., Dolinšek J. Nanostructure and local polymorphism in “ideal-like” rare-earths-based high-entropy alloys // Mater. Charact. 2021. V. 172. P. 110 837.
  17. Упоров С.А., Эстемирова С.Х., Стерхов Е.В., Зайцева П.В., Скрыльник М.Ю., Шуняев К.Ю., Ремпель А.А. Особенности кристаллизации, структуры и термической стабильности высокоэнтропийных сплавов GdTbDyHoSc и GdTbDyHoY // Расплавы. 2022. № 5. С. 443–453.
  18. Popova E.A., Kotenkov P.V., Gilev I.O. Formation of metastable aluminides in alloys of Al–Hf–Sc(Ti) systems // Met. Sci. Heat Treat. 2020. V. 61. P. 782–786.
  19. Dorin T., Ramajayam M., Vahid A. Langan T. Fundamentals of aluminiummetallurgy. Chapter12 – Aluminiumscandium alloys / Elsevier Ltd. 2018. P. 439–494.
  20. Kaigorodova L.I., Rasposienko D.Y., Pushin V.G., Pilyugin V.P., Smirnov S.V. Influence of severe plastic deformation on the structure and properties of Al–Li–Cu–Mg–Zr–Sc–Znalloy // The Physics of Metals and Metallography. 2018. V. 119. № 2. P. 161–168.
  21. Udoeva L.Y., Chumarev V.M., Larionov A.V., Zhidovinova S.V., Tyushnyakov S.N. Influence of rare earth elements on the structural-phase state of Mo–Si–X (X = Sc, Y, Nd) in situ composites // Inorg. Mater. Appl. Res. 2018. V. 9. P. 257–263.
  22. Da Silveira R.M.S., Guimarães A.V., De Melo C.H., Ribeiro R.M., Farina A.B., Malet L., De Almeida L.H., Araujo L.S. Effect of yttrium addition on phase transformations in alloy 718 // J. Mater. Res. Technol. 2022. V. 18. P. 3283–3290.
  23. Oh J.Y., Ko W.S., Suh J.Y., Lee Y.S., Lee B.J., Yoon W.Y., Shim J.H. Enhanced high temperature hydrogen permeation characteristics of V–Ni alloy membranes containing a trace amount of yttrium // Scr. Mater. 2016. V. 116. P. 122–126.
  24. Uporov S., Sterkhov E., Balyakin I. Magnetocaloric effect in ScGdHomedium-entropy alloy // J. Supercond. Nov. Magn. 2022. V. 35. P. 1539–1545.
  25. Барков Р.Ю., Хомутов М.Г., Главатских М.В., Поздняков А.В. Влияние иттрия и циркония на структуру и свойства сплава Al–5Si–1.3Cu–0.5Mg // Физика металлов и металловедение. 2022. Т. 123. № 6. С. 637–642.
  26. Uporov S.A., Estemirova S.K., Sterkhov E.V., Balyakin I.A., Rempel A.A. Magnetocaloric effect in ScGdTbDyHo high-entropy alloy: impact of synthesis route // Intermetallics. 2022. V. 151. P. 107678.
  27. ASTM G-77-17 Standard test method for ranking resistance of materials to sliding wear using block-on-ring wear test. 2017. P. 11.
  28. Gelchinski B.R., Balyakin I.A., Yuryev A.A., Rempel A.A. High-entropy alloys: properties and prospects of application as protective coatings // Russ. Chem. Rev. 2022. V. 91. P. 248–253.
  29. Gorbachev I.I., Popov V.V., Katz-Demyanetz A., Eshed E. Prediction of the phase composition of high entropy alloys based on Cr–Nb–Ti–V–Zrusing the calphad method // The Physics of Metals and Metallography. 2019. V. 120. № 4. P. 378–386.
  30. Химушин Ф.Ф. Жаропрочные стали и сплавы. М.: Металлургия, 1969. 752 с.

Қосымша файлдар


© И.С. Сипатов, О.А. Королёв, Е.В. Игнатьева, Л.А. Маршук, Б.Р. Гельчинский, А.А. Ремпель, 2023

Осы сайт cookie-файлдарды пайдаланады

Біздің сайтты пайдалануды жалғастыра отырып, сіз сайттың дұрыс жұмыс істеуін қамтамасыз ететін cookie файлдарын өңдеуге келісім бересіз.< / br>< / br>cookie файлдары туралы< / a>