Magnetocaloric Effect of Mn2YSn (Y = Sc, Ti, V) Alloys

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Abstract

In this paper, the structural, magnetic, and thermodynamic properties of Mn2YSn (Y = Sc, Ti, and V) alloys are considered depending on the applied pressure using the density functional theory and the Monte Carlo method. It is shown that for each compound there are two magnetic states with a low and a high magnetic moment at a smaller and larger unit cell volume, separated by an energy barrier. The barrier value depends on the applied external pressure. The two phases become almost equal in energy at critical pressures of 3.4, –2.9, and –3.25 GPa for Mn2ScSn, Mn2TiSn, and Mn2VSn, respectively. The temperature behavior of the magnetization and magnetocaloric characteristics for the studied phases at various pressures is obtained. Accounting for pressure leads to an understanding of the mechanism of the increase in the magnetocaloric effect in the phase with a high magnetic moment. The greatest effect (ΔSmag ≈ 0.158 J/mol K and ΔTad ≈ 1.1 K) is predicted for Mn2TiSn at a pressure of –2.9 GPa and a change in the magnetic field from 0 to 2 T.

作者简介

V. Sokolovskiy

Chelyabinsk State University

Email: miczag@mail.ru
Russia, 454001, Chelyabinsk

M. Zagrebin

Chelyabinsk State University

编辑信件的主要联系方式.
Email: miczag@mail.ru
Russia, 454001, Chelyabinsk

V. Buchelnikov

Chelyabinsk State University

Email: miczag@mail.ru
Russia, 454001, Chelyabinsk

参考

  1. Fert A. Nobel Lecture: Origin, development, and future of spintronics // Rev. Mod. Phys. 2008. V. 80. P. 1517.
  2. Bhatti S., Sbiaa R., Hirohata A., Ohno H., Fukami S., Piramanayagam S.N. Spintronics based random access memory: A review // Mater. Today. 2017. V. 20. P. 530–548.
  3. Zhang H., Kang W., Cao K., Zhao W. Spintronic processing unit in spin transfer torque magnetic random access memory // IEEE Trans. Electron Devices. 2019. V. 66. P. 2017–2022.
  4. Puebla J., Kim J., Kondou K., Otani Y. Spintronic devices for energy-efficient data storage and energy harvesting // Commun. Mater. 2020. V. 1. P. 1–9.
  5. Hirohata A., Yamada K., Nakatani Y., Prejbeanu I.-L., Diény B., Pirro P., Hillebrands B. Review on spintronics: Principles and device applications // J. Magn. Magn. Mater. 2020. V. 509. P. 166711.
  6. Galanakis I., Özdoğan K., Şaşıoğlu E., Aktaş B. Doping of Mn2VAl and Mn2VSi Heusler alloys as a route to half-metallic antiferromagnetism // Phys. Rev. B. 2007. V. 75. P. 092407.
  7. Luo H., Zhu Z., Liu G., Xu S., Wu G., Liu H., Qu J., Li Y. Prediction of half-metallic properties for the Heusler alloys Mn2CrZ (Z = Al, Ga, Si, Ge, Sb): A first-principles study // J. Magn. Magn. Mater. 2008. V. 320. P. 421–428.
  8. Luo H.Z., Zhang H.W., Zhu Z.Y., Ma L., Xu S.F., Wu G.H., Zhu X.X., Jiang C.B., Xu H.B. Half-metallic properties for the Mn2FeZ (Z = Al, Ga, Si, Ge, Sb) Heusler alloys: a first-principles study // J. Appl. Phys. 2008. V. 103. P. 083 908.
  9. Zenasni H., Faraoun H.I., Esling C. First-principle prediction of half-metallic ferrimagnetism in Mn-based full-Heusler alloys with highly ordered structure // J. Magn. Magn. Mater. 2013. V. 333. P. 162–168.
  10. Nayak A.K., Nicklas M., Chadov S., Khuntia P., Shekhar C., Kalache A., Baenitz M., Skourski Y., Guduru V.K., Puri A., Zeitler U., Coey J.M.D., Felser C. Design of compensated ferrimagnetic Heusler alloys for giant tunable exchange bias // Nat. Mater. 2015. V. 14. P. 679–684.
  11. Felser C., Wollmann L., Chadov S., Fecher G.H., Parkin S.S.P. Basics and prospective of magnetic Heusler compounds // APL Mater. 2015. V. 3. P. 041518.
  12. Marchenkov V.V., Irkhin V.Yu., Semiannikova A.A. Unusual kinetic properties of usual Heusler alloys // J. Supercond. Nov. Magn. 2022. V. 35. P. 2153–2168.
  13. Liu Z., Yu S., Yang H., Wu G., Liu Y. Phase separation and magnetic properties of Co–Ni–Al ferromagnetic shape memory alloys // Intermetallics. 2008. V. 16. P. 447–452.
  14. Abbas Emami S.A., Amirabadizadeh A., Nourbakhsh Z., Baizaee S.M., Alavi Sadr S.M. Study of the Structural, Electronic, Magnetic, and Optical Properties of Mn2ZrGa Full-Heusler Alloy: First-Principles Calculations // J. Supercond. Nov. Magn. 2018. V. 31. P. 127–134.
  15. Abada A., Amara K., Hiadsi S., Amrani B. First principles study of a new half-metallic ferrimagnets Mn2-based full Heusler compounds: Mn2ZrSi and Mn2ZrGe // J. Magn. Magn. Mater. 2015. V. 388. P. 59–67.
  16. Jiang D., Ye Y., Liu H., Gou Q., Wu D., Wen Y., Liu L. First-principles calculations of electronic, acoustic and anharmonic properties of Mn2RuZ (Z = Si and Ge) Heusler compounds // J. Magn. Magn. Mater. 2018. V. 458. P. 268–276.
  17. Ren Z., Liu Y., Li S., Zhang X., Liu H. Site preference and electronic structure of Mn2RhZ (Z = Al, Ga, In, Si, Ge, Sn, Sb): a theoretical study // Mater. Sci.-Pol. 2016. V. 34. P. 251–259.
  18. Kresse G., Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set // Phys. Rev. B. 1996. V. 54. P. 11169–11186.
  19. Kresse G., Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method // Phys. Rev. B. 1999. V. 59. P. 1758.
  20. Perdew J.P., Burke K., Ernzerhof M. Generalized gradient approximation made simple // Phys. Rev. Lett. 1996. V. 77. P. 3865–3868.
  21. Sokolovskiy V., Zagrebin M., Baigutlin D., Buchelnikov V. Ab initio prediction of coexistence of two magnetic states in Mn2YSn (Y = Sc, Ti, and V) Heusler alloys under applied pressure // Comput. Mater. Sci. 2023. V. 228. P. 112 365.
  22. Schwarz K., Mohn P. Itinerant metamagnetism in YCo2 // J. Phys. F. 1984. V. 14. P. L129.
  23. Moruzzi V.L., Marcus P.M., Schwarz K., Mohn P. Ferromagnetic phases of bcc and fcc Fe, Co, and Ni // Phys. Rev. B. 1986. V. 34. P. 1784.
  24. Kitagawa J., Sakaguchi K., Hara T., Hirano F., Shirakawa N., Tsubota M. Interstitial atom engineering in magnetic materials // Metals. 2020. V. 10. P. 1644.
  25. Tian L.Y., Eriksson O., Vitos L. Pressure effect on the order–disorder transformation in L10−FeNi // Sci. Rep. 2020. V. 10. P. 14766.

补充文件

附件文件
动作
1. JATS XML
2.

下载 (180KB)
3.

下载 (445KB)
4.

下载 (379KB)
5.

下载 (170KB)

版权所有 © В.В. Соколовский, М.А. Загребин, В.Д. Бучельников, 2023

##common.cookie##