Atomistic Simulation of Symmetric and Asymmetric Tilt Grain Boundaries 5 <001> in Niobium: Structure, Energy, Point Defects, Grain Boundary Self-Diffusion

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Symmetric and three asymmetric tilt grain boundaries Ʃ 5 in niobium have been studied by computer simulation methods. The structure and energies of the boundaries under consideration, as well as the energies of the formation of point defects in them, are calculated by the method of molecular-static modeling. The dependences of the formation energies of point defects on the distance from the plane of the grain boundary are analyzed. Using the method of molecular dynamics, the coefficients of grain-boundary self-diffusion for the considered boundaries are calculated.

Авторлар туралы

M. Stupak

Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences

Email: vpopov@imp.uran.ru
Ekaterinburg, 620108 Russia

M. Uгazaliev

Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences

Email: vpopov@imp.uran.ru
Ekaterinburg, 620108 Russia

V. Popov

Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences

Хат алмасуға жауапты Автор.
Email: vpopov@imp.uran.ru
Ekaterinburg, 620108 Russia

Әдебиет тізімі

  1. Sutton A.P., Balluffi R.W. Interfaces in Crystalline Materials. Clarendon Press, Oxford, 1995. 819 p.
  2. Liu Z.-H., Feng Y.-X., Shang J.-X. Characterizing twist grain boundaries in BCC Nb by molecular simulation: Structure and shear deformation // Appl. Surface Sci. 2016. V. 370. P. 19–24. https://doi.org/10.1016/j.apsusc.2016.02.097
  3. Singh D., Parashar A. Effect of symmetric and asymmetric tilt grain boundaries on the tensile behaviour of bcc-Niobium // Comp. Mater. Sci. 2018. V. 143. P. 126–132. https://doi.org/10.1016/j.commatsci.2017.11.005
  4. Singh D., Sharma P., Parashar A. Atomistic simulations to study point defect dynamics in bi-crystalline niobium // Mater. Chem. Phys. 2020. V. 255. P. 123628. https://doi.org/10.1016/j.matchemphys.2020.123628
  5. Singh D., Parashar A.A. Comparison between Σ3 Asymmetrical Tilt Grain Boundary Energies in Niobium Obtained Analytically and through Molecular Dynamics Based Simulations // Mater. Sci. Forum Submitted. 2020. V. 998. P. 179–184. https://doi.org/10.4028/www.scientific.net/MSF.998.179
  6. Popov V.V., Stupak M.E., Urazaliev M.G. Atomistic Simulation of Grain Boundaries in Niobium: Structure, Energy, Point Defects and Grain-Boundary Self-Diffusion // J. Phase Equilib. Diffus. 2022. V. 43. P. 401–408. https://doi.org/10.1007/s11669-022-00981-6
  7. Lipnitskii A.G., Nelasov I.V., Golosov E.V., Kolobov Y.R., Maradudin D.N. A molecular-dynamics simulation of grain-boundary diffusion of niobium and experimental investigation of its recrystallization in a niobium-copper system // Russian Phys. J. 2013. V. 56(3). P. 330–337. https://doi.org/10.1007/s11182-013-0036-2
  8. Plimton S. Fast Parallel Algorithms for Short_Range Molecular Dynamics // J. Comp. Phys. 1995. V. 117. P. 1–19. https://doi.org/10.1006/jcph.1995.1039
  9. Tschopp M.A., McDowell D.L. Structures and energies of Σ 3 asymmetric tilt grain boundaries in copper and aluminium // Phil. Mag. 2007. V. 87(22). P. 3147–3173. https://doi.org/10.1080/14786430701255895
  10. Уразалиев М.Г., Ступак М.Е., Попов В.В. Структура и энергия симметричных границ наклона с осью в Ni и энергии образования вакансий в границах зерен // ФММ. 2021. Т. 122. № 7. С. 713–720. https://doi.org/10.1134/S0031918X2107013910.1134/S0031918X21070139
  11. Zhang Y., Ashcraft R., Mendelev M.I., Wang C.Z., Kelton K.F. Experimental and molecular dynamics simulation study of structure of liquid and amorphous Ni62Nb38 alloy // J. Chem. Phys. 2016. V. 145(20). P. 204 505. https://doi.org/10.1063/1.4968212
  12. Stukowski A. Visualization and analysis of atomistic simulation data with OVITO – the Open Visualization Tool // Modelling Simul. Mater. Sci. Eng. 2010. V. 18. P. 015012. https://doi.org/10.1088/0965-0393/18/1/015012
  13. Polyak B.T. The conjugate gradient method in extremal problems // USSR Comput. Math. Math. Phys. 1969. V. 9(4). P. 94–112. https://doi.org/10.1016/0041-5553(69)90035-4
  14. Nosé S. A unified formulation of the constant temperature molecular dynamics methods // J. Chem. Phys. 1984. V. 81. P. 511. https://doi.org/10.1063/1.447334
  15. Hoover W.G., Holian B.L. Kinetic moments method for the canonical ensemble distribution // Phys. Lett. Sect. A Gen. Solid State Phys. 1996. V. 211. P. 253–257. https://doi.org/10.1016/0375-9601(95)00973-6
  16. Novoselov I.I., Kuksin A.Y., Yanilkin A.V. Energies of formation and structures of point defects at tilt grain boundaries in molybdenum // Phys. Solid State. 2014. V. 56. P. 1401–1407. https://doi.org/10.1134/S1063783414070282
  17. Mendelev M.I., Zhang H., Srolovitz D.J. Grain boundary self-diffusion in Ni: Effect of boundary inclination // J. Mater. Res. 2005. V. 20. No. 5. P. 1146–1153. https://doi.org/10.1557/JMR.2005.0177
  18. Hart E.W. On the role of dislocations in bulk diffusion // Acta Metal. 1957. V. 5. Issue 10. P. 597. https://doi.org/10.1016/0001-6160(57)90127-X
  19. Divinski S.V., Bokstein B.S. Recent Advances and Unsolved Problems of Grain Boundary Diffusion // Defect and Diffusion Forum 2011. V. 309–310. P. 1–8. https://doi.org/10.4028/www.scientific.net/DDF.309-310.1
  20. Koppers M., Mishin Yu., Herzig Chr. Diffusion of cobalt along stationary and moving grain boundaries in niobium // Acta Metal, Mater. 1994. V. 42. № 8. P. 2859–2868. https://doi.org/10.1016/0956-7151(94)90227-5
  21. Faken Daniel, Jónsson Hannes. Systematic analysis of local atomic structure combined with 3D computer graphics // Comp. Mater. Sci. 1994. V. 2. Issue 2. P. 279–286. https://doi.org/10.1016/0927-0256(94)90109-0
  22. Larsen P.M. Revisiting the common neighbour analysis and the centrosymmetry parameter, arXiv preprint arXiv:2003.08879 (2020). https://doi.org/10.48550/arXiv.2003.08879
  23. Fellinger M.R., Park H., Wilkins J.W. Force-matched embedded atom method potential for niobium // Phys. Rev. B: Condens. Matter. 2010. V. 81. P. 144119. https://doi.org/10.1103/PhysRevB.81.144119
  24. Tschopp M.A., Solanki K.N., Gao F., Sun X., Khaleel M.A., Horstemeyer M.F. Probing grain boundary sink strength at the nanoscale: Energetics and length scales of vacancy and interstitial absorption by grain boundaries in α-Fe // Phys. Rev. 2012. V. 85. P. 064108. https://doi.org/10.1103/PhysRevB.85.064108
  25. Карькина Л.Е., Карькин И.Н., Горностырев Ю.Н. Зернограничное проскальзывание по специальным асимметричным границам зерен в бикристаллах Al. Атомистическое молекулярно-динамическое моделирование// ФММ. 2021. Т. 122. № 11. С. 1187–1195. https://doi.org/10.31857/S0015323021110073

Қосымша файлдар


© М.Е. Ступак, М.Г. Уразалиев, В.В. Попов, 2023

Осы сайт cookie-файлдарды пайдаланады

Біздің сайтты пайдалануды жалғастыра отырып, сіз сайттың дұрыс жұмыс істеуін қамтамасыз ететін cookie файлдарын өңдеуге келісім бересіз.< / br>< / br>cookie файлдары туралы< / a>