Magnetic properties of layered Ni/Cu nanowires

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

In this paper, the structural and magnetic properties of layered nanowires (NWs) made of alternating layers of nickel and copper were investigated. NW arrays were obtained by matrix synthesis. The nickel layers had a fixed thickness of 400 nm, and the thickness of the copper layers varied from 25 to 300 nm. The magnetic characteristics of such NWs were studied in two states: in a matrix (integral magnetic characteristics determined using vibrating sample magnetometry) and for individual NW (local magnetization visualized using MFM). For NWs in the matrix, the hysteresis loops measured for the two directions of the magnetic field become identical when the thickness of the Cu layer increases to 300 nm, which is due to the weakening of the dipole interaction between the Ni layers. The coercive force (190 Oe) and the residual magnetization (0.32 Ms) in the parallel direction of the field are maximal for the thickness of the Cu layer equal to 100 nm, which corresponds to the diameter of NWs and the distance between them. The MFM method was used to study samples with Cu layer thicknesses of 300 nm. It is demonstrated step by step how the application of an external magnetic field leads to remagnetization. An intermediate antiparallel distribution of magnetization in neighboring layers is revealed. The magnitude of the coercive force for an agglomerate of two or three NWs varies between 40-50 Oe, but the magnetization switching field turns out to be about 160 Oe, which is comparable to the coercive force for an array of NWs of this type (180-190 Oe). This demonstrates the role of the NWs' dipole interaction in the matrix.

About the authors

D. A. Bizyaev

Zavoisky Physical-Technical Institute, FRC Kazan Scientific Center, Russian Academy of Sciences

Email: hairetdr@gmail.com
Kazan, 420029 Russia

D. R. Khairetdinova

Federal Research Center “Crystallography and Photonics” RAS; MISiS National University of Science and Technology; Immanuel Kant Baltic Federal University

Email: hairetdr@gmail.com
Moscow, 119333 Russia; Moscow, 119049 Russia; Kaliningrad, 236041 Russia

D. L. Zagorskiy

Federal Research Center “Crystallography and Photonics” RAS

Email: hairetdr@gmail.com
Moscow, 119333 Russia

I. M. Doludenko

Federal Research Center “Crystallography and Photonics” RAS

Email: hairetdr@gmail.com
Moscow, 119333 Russia

L. V. Panina

MISiS National University of Science and Technology; Immanuel Kant Baltic Federal University

Email: hairetdr@gmail.com
Moscow, 119049 Russia; Kaliningrad, 236041 Russia

A. A. Bukharaev

Zavoisky Physical-Technical Institute, FRC Kazan Scientific Center, Russian Academy of Sciences

Email: hairetdr@gmail.com
Kazan, 420029 Russia

A. Rizvanova

MISiS National University of Science and Technology

Author for correspondence.
Email: hairetdr@gmail.com
Moscow, 119049 Russia

References

  1. Martin C.R. Nanomaterials: A membrane-based synthetic approach // Science. 1994. V. 268. № 5193. P. 1961–1966.
  2. Vazquez M. Magnetic nano- and microwires: design, synthesis, properties and applications. Amsterdam: Elsevier-Woodhead Publishing, 2015. 847 p.
  3. Wang P., Gao L., Wang L., Zhang D., Yang S., Song X., Qiu Z., Murakami R. Magnetic properties of FeNi nanowires arrays assembled on porous AAO template by AC electrodeposition// Int. J. Mod. Phys. B. 2010. V. 24. P. 2302–2307.
  4. Давыдов А.А., Волгин В.М. Темплатное электроосаждение металлов // Электрохимия. 2016. Т. 52. № 9. С. 905.
  5. Masuda H., Fukuda K. Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina // Science. 1995. V. 268. № 5216. P. 1466–1468.
  6. Борисенко В.Е., Данилюк А.П., Мигас Д.Б. // Спинтроника. М.: Лаборатория знаний, 2017. 231 с.
  7. Lupu N. Electrodeposited Nanowires and Their Applications. Croatia: Intech, 2010. 228 p.
  8. Gandha K., Elkins K., Poudyal N., Liu X., Liu J.P. High Energy Product Developed from Cobalt Nanowires // Sci. Rep. 2014. V. 4. № 1. P. 5345.
  9. Samardak A.S., Sukovatitsina E.V., Ognev A.V., Chebotkevich L.A., Mahmoodi R., Peighambari S.M., Hosseini M.G., Nasirpouri F. High-density nickel nanowire arrays for data storage applications // J. Phys.: Conf. Ser. 2012. V. 345. № 1. P. 012011.
  10. Zamani Kouhpanji M.R., Ghoreyshi A., Visscher P.B., Stadler B.J.H. Facile decoding of quantitative signatures from magnetic nanowire arrays // Sci. Rep. 2020. V. 10. № 1. P. 15482.
  11. Zamani Kouhapanji M.R., Nemati Z., Modiano J.F., Franklin R.R., Stadler B.J.H. Realizing the principles for remote and selective detection of cancer cells using magnetic nanowires // J. Phys. Chem. B. 2021. V. 125. № 28. P. 7742–7749.
  12. Ivanov Y.P., Chuvilin A., Lopatin S., Kosel J. Modulated magnetic nanowires for controlling domain wall motion: toward 3D magnetic memories // ACS Nano. 2016. V. 10. № 5. P. 5326–5332.
  13. Um J., Zama Kouhpanji M.R., Liu S., Porshokouh Z.N., Sung S.Y., Kosel J., Stadler B. Fabrication of Long-Range Ordered Aluminum Oxide and Fe/Au Multilayered Nanowires for 3-D Magnetic Memory // IEEE Trans. Magn. 2020. V. 56. № 2. P. 1–6.
  14. Долуденко И.М., Михеев А.В., Бурмистров И.А., Трушина Д.Б., Бородина Т.Н., Букреева Т.В., Загорский Д.Л. Получение цилиндрических магнитных наночастиц для функционализации полиэлектролитных микрокапсул // ЖТФ. 2020. Т. 90. № 9. С. 1435–1441.
  15. Abdellahi M., Tajally M., Mirzaee O. The effect of the particle size on the heating and drug release potential of the magnetic nanoparticles in a novel point of view // J. Magn. Magn. Mater. 2021. V. 530. P. 167938.
  16. Zagorskiy D.L., Doludenko I.M., Chigarev S.G., Vilkov E.A., Kanevskii V.M., Panas A.I. Ensembles of layered nanowires, obtained by matrix synthesis technique, for generation of THz irradiation // IEEE Transactions on Magnetics. 2022. V. 58. № 2. P. 2 300 605.
  17. Chen M., Searson P.C. Micromagnetic behavior of electrodeposited Ni/Cu multilayer nanowires // J. Appl. Phys. 2003. V. 93. № 10. P. 8253–8255.
  18. Carignan L.-P., Lacroix C., Ouimet A., Ciureanu M., Yelon A., Ménard D. Magnetic anisotropy in arrays of Ni, CoFeB, and Ni/Cu nanowires // J. Appl. Phys. 2007. V. 102. № 2. P. 0239054.
  19. Moraes S., Navas D., Béron F., Proenca M.P., Pirota K.R., Sousa C.T., Araújo J.P. The Role of Cu Length on the Magnetic Behaviour of Fe/Cu Multi-Segmented Nanowires // Nanomaterials. 2018. V. 8. № 7. P. 490–502.
  20. Черкасов Д.А., Загорский Д.Л., Хайбуллин Р.И., Муслимов А.Э., Долуденко И.М. Структура и магнитные свойства слоевых нанопроволок из 3d-металлов, полученных методом матричного синтеза // ФТТ. 2020. Т. 62. № 9. С. 1531–1541.
  21. Nielsch K., Hertel R., Wehrspohn R.B. High-Density Nickel Nanowire Arrays / Ordered Porous Nanostructures and Applications. Nanostructure Science and Technology. Boston: Springer, 2005. P. 165–184.
  22. Ivanov Yu.P., Chuvilin A., Vivas L.G., Kosel J., Chubykalo-Fesenko O., Vázquez M. Single crystalline cylindrical nanowires – toward dense 3D arrays of magnetic vortices // Sci. Rep. 2016. V. 6. № 1. P. 23844.
  23. Бизяев Д.А., Бухараев А.А., Хайбуллин Р.И., Лядов Н.М., Загорский Д.Л., Бедин С.А., Долуденко И.М. Магнитно-силовая микроскопия металлических нанопроволок железа и никеля, полученных методом матричного синтеза // Микроэлектроника. 2018. Т. 47. № 3. С. 212–221.
  24. Liu R.S., Chang S.C., Hu S.F., Huang C.Y. Highly ordered magnetic multilayer Ni/Cu nanowires // Phys. Stat. Sol. 2006. V. 2. № 5. P. 1339–1342.
  25. Samardak A.Yu., Jeon Y.S., Kozlov A.G., Rogachev K.A., Ognev A.V., Jeong E., Kim G.W., Ko M.J., Samardak A.S., Kim Y.K. Inter-wire and Intra-wire Magnetostatic Interactions in Fe-Au Barcode Nanowires with Alternating Ferromagnetically Strong and Weak Segments // Small. 2022. P. 2203555.
  26. Marqués-Marchán J., Fernandez-Roldan J.A., Bran C., Puttock R., Barton C., Moreno J.A., Kosel J., Vazquez M., Kazakova O., Chubykalo-Fesenko O., Asenjo A. Distinguishing Local Demagnetization Contribution to the Magnetization Process in Multisegmented Nanowires // Nanomaterials. 2022. V. 12. № 12. P. 1968.
  27. Bochmann S., Döhler D., Trapp B., Stano M., Fruchart O., Bachmanna J. Preparation and physical properties of soft magnetic nickel-cobalt nanowires with modulated diameters // J. Appl. Phys. 2018. V. 124. № 16. P. 163 907.
  28. Zagorskiy D., Doludenko I., Zhigalina O., Khmelenin D., Kanevskiy V. Formation of nanowires of various types in the process of galvanic deposition of iron group metals into the pores of track membrane // Membranes. 2022. V. 12. № 2. P. 195.
  29. Bukharaev A.A., Biziaev D.A., Borodin P.A., Ovchinnikov D.V. In situ Magnetization Reversal Measurement of Magnetic Tips in a Magnetic Force Microscope // Phys. Low-Dim. Struc. 2004. V. 1. № 2. P. 153.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (1MB)
3.

Download (285KB)
4.

Download (42KB)
5.

Download (1MB)
6.

Download (1MB)
7.

Download (2MB)
8.

Download (1MB)


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».