EFFECT OF HIGH PRESSURE TORSION ON STRUCTURE AND MECHANICAL PROPERTIES OF Al–Ca–Cu ALLOY

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

To improve the balance of strength and ductility of the Al–6% Ca–8% Cu (wt %) alloy, the high-pressure torsion (HPT) deformation followed by annealing was applied. The structure of the as-cast alloy consisted mainly of two eutectics [(Al) + AlCaCu] and [(Al) + (Al, Cu)4Ca + AlCaCu]. HPT through three turns leads to the formation of a predominantly submicrocrystalline structure, refinement of eutectic particles and their more uniform distribution in the sample volume, calcium segregation from AlCuCa and (Al, Cu)4Ca particles, and supersaturation of the (Al) solid solution with copper. Such a structure provides a strengthening of the alloy by a factor of 3.5, but contributes to its embrittlement. Subsequent annealing at 400°C achieves a good balance of strength and ductility of the alloy.

Sobre autores

S. Rogachev

MISiS National University of Science and Technology; Institute of Metallurgy and Materials Science. A.A. Baikov, Russian Academy of Sciences

Email: csaap@mail.ru
Moscow, 119049 Russia; Moscow, 119334 Russia

E. Naumova

MISiS National University of Science and Technology

Email: csaap@mail.ru
Moscow, 119049 Russia

N. Tabachkova

MISiS National University of Science and Technology

Email: csaap@mail.ru
Moscow, 119049 Russia

D. Ten

MISiS National University of Science and Technology

Email: csaap@mail.ru
Moscow, 119049 Russia

R. Sundeev

MISiS National University of Science and Technology

Email: csaap@mail.ru
Moscow, 119049 Russia

M. Zadorozhny

Moscow Polytechnic University

Autor responsável pela correspondência
Email: csaap@mail.ru
Moscow, 107023 Russia

Bibliografia

  1. Horita Z., Fujinami T., Nemoto M., Langdon T.G. Equal-channel angular pressing of commercial aluminum alloys: grain refinement, thermal stability and tensile properties // Metal. Mater. Trans. A. 2000. V. 31. P. 691–701.
  2. Бродова И.Г., Ширинкина И.Г., Петрова А.Н., Пилюгин В.П., Толмачев Т.П. Структура алюминиевого сплава АМЦ после кручения под высоким давлением в жидком азоте // ФММ. 2013. Т. 114. № 8. С. 725–730.
  3. Lanjewar H., Kestens L.A.I., Verleysen P. Damage and strengthening mechanisms in severely deformed commercially pure aluminum: Experiments and modeling // Mater. Sci. Eng. A. 2021. V. 800. P. 140224.
  4. Исламгалиев Р.К., Нестеров К.М., Хафизова Э.Д., Ганеев А.В., Голубовский Е.Р., Волков М.Е. Прочность и усталость ультрамелкозернистого алюминиевого сплава АК4-1 // Вестник УГАТУ. 2012. Т. 16. № 8(53). С. 104–109.
  5. Leo P., Cerri E., De Marco P.P., Roven H.J. Properties and deformation behaviour of severe plastic deformed aluminium alloys // J. Mater. Proces. Techn. 2007. V. 182. P. 207–214.
  6. Мавлютов А.М., Касаткин И.А., Мурашкин М.Ю., Валиев Р.З., Орлова Т.С. Влияние микроструктуры на физико-механические свойства алюминиевого сплава системы Al–Mg–Si, наноструктурированного интенсивной пластической деформацией // ФТТ. 2015. Т. 57. № 10. С. 1998–2004.
  7. Rogachev S.O., Naumova E.A., Vasileva E.S., Magurina M.Yu., Sundeev R.V., Veligzhanin A.A. Structure and mechanical properties of Al–Ca-alloys processed by severe plastic deformation // Mater. Sci. Eng. A. 2019. V. 767. P. 138410.
  8. Кикин П.Ю., Мишакин В.В., Перевезенцев В.Н., Землякова Н.В., Кассина Н.В. Исследование корреляции структурных параметров и механических свойств с акустическими характеристиками ультрамелкозернистого алюминиевого сплава 1421 // Вопр. материаловедения. 2008. № 3(55). С. 19–24.
  9. Yang Y., Nie J., Mao Q., Zhao Y. Improving the combination of electrical conductivity and tensile strength of Al 1070 by rotary swaging deformation // Results in Physics. 2019. V. 13. P. 102236.
  10. Khafizova E., Islamgaliev R. Effect of severe plastic deformation on the structure and mechanical properties of Al–Cu–Mg alloy // IOP Conference Series: Mater. Sci. Eng. 2014. V. 63. P. 012081.
  11. Belov N.A., Naumova E.A., Bazlova T.A., Alekseeva E.V. Structure, phase composition, and strengthening of cast Al–Ca–Mg–Sc alloys // Phys. Metal. Metal. 2016. V. 117. № 2. P. 188–194.
  12. Shurkin P.K., Letyagin N.V., Yakushkova A.I., Samoshina M.E., Ozherelkov D.Y., Akopyan T.K. Remarkable thermal stability of the Al–Ca–Ni–Mn alloy manufactured by laser-powder bed fusion // Mater. Letters. 2021. V. 285. P. 129 074.
  13. Летягин Н.В., Шуркин П.К., Нгуен З., Кошмин А.Н. Влияние термодеформационной обработки на структуру и механические свойства сплава Al3Ca1Cu1.5Mn // ФММ. 2021. Т. 122. № 8. С. 873–879.
  14. Sauvage X., Cuvilly F., Russell A., Edalati K. Understanding the role of Ca segregation on thermal stability, electrical resistivity and mechanical strength of nanostructured aluminum // Mater. Sci. Eng. A. 2020. V. 798. P. 140 108.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (1MB)
3.

Baixar (3MB)
4.

Baixar (1MB)
5.

Baixar (138KB)
6.

Baixar (165KB)
7.

Baixar (90KB)
8.

Baixar (1MB)

Declaração de direitos autorais © С.О. Рогачев, Е.А. Наумова, Н.Ю. Табачкова, Д.В. Тен, Р.В. Сундеев, М.Ю. Задорожный, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies