Structural Evolution of 10% Cr–3% Co Steel Microalloyed with Re and Cu during Creep Au 923 К

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Structural evolution of the tempered lath martensite of the 10% Cr--3% Co steel microalloyed with rhenium and copper with a low nitrogen content and a high boron content during creep at 923 K was investigated for the purpose of establishment of the rison of decrease in creep resistance of this steel under the low applied stress. The tempered martensite lath structure of 10%Cr-3%Co steel with an average lath size of 370 nm and a high dislocation number density of 2 ×1014 m–2 was observed after normalizing at 1323 K with the following tempering at 1043 K for 3 h. The structure was stabilized by M23C6 carbides, M6C carbides, and NbX carbonitrides. During long-term creep, the lath structure strongly experienced an evolution: the width of the martensitic laths increased significantly, dislocation density decreased, the Laves phase and Cu-enriched particles remarkably coarsen. Such structural evolution correlates with an appearance of creep strength breakdown on curves “Applied stress vs. Time to failure” and “Minimum creep rate vs. Applied stress”. Significant coarsening of the Laves phase particles and Cuenriched particles via formation of the large particles with sizes more than 250 nm along high-angle boundaries and full dissolution of the fine particles with sizes less than 50 nm along low-angle boundaries of martensite laths is considered to be the main cause of degradation of the creep resistance of the steel studied.

作者简介

A. Fedoseeva

Belgorod National Research University

编辑信件的主要联系方式.
Email: fedoseeva@bsu.edu.ru
Belgorod, 308015 Russia

参考

  1. Abe F., Kern T.U., Viswanathan R. Creep-resistant steels. Woodhead: Publishing, Cambridge, 2008. 800 p.
  2. Кайбышев Р.О., Скоробогатых В.Н., Щенкова И.А. Новые стали мартенситного класса для тепловой энергетики // ФММ. 2010. Т. 109. С. 200–215.
  3. Klueh R.L. Elevated temperature ferritic and martensitic steels and their application to future nuclear reactors // Int. Mater. Rev. 2005. V. 50. P. 287−310.
  4. Abe F. Precipitate design for creep strengthening of 9% Cr tempered martensitic steel for ultra-supercritical power plants // Sci. Technol. Adv. Mater. 2008. V. 9. P. 013002.
  5. Федосеева А.Э., Козлов П.А., Дудко В.А., Скоробогатых В.Н., Щенкова И.А., Кайбышев Р.О. Микроструктурные изменения в стали 10Х9В2МФБР при ползучести в течение 40 000 ч при 600°С // ФММ. 2015. Т. 116. С. 1102−1111.
  6. Сагарадзе В.В., Кочеткова Т.Н., Катаева Н.В., Козлов К.А., Завалишин В.А., Вильданова Н.Ф., Агеев В.С., Леонтьева-Смирнова М.В., Никитина А.А. Структура и ползучесть российских реакторных сталей с ОЦК-решеткой // ФММ. 2017. Т. 118. С. 522−534.
  7. Fedoseeva A., Nikitin I., Tkachev E., Mishnev R., Dudova N., Kaibyshev R. Effect of alloying on the nucleation and growth of Laves phase in the 9–10%Cr−3%Co martensitic steels during creep // Metals. 2021. V. 11. P. 60.
  8. Федосеева А.Э., Дегтярева С.И. Влияние длительного отжига на стабильность структуры низкоуглеродистой 9%Cr–3%Сo стали, упрочненной наночастицами // ФММ. 2022. Т. 123. С. 1109−1116.
  9. Morito S., Tanaka H., Konishi R., Furuhara T., Maki T. The morphology and crystallography of lath martensite in Fe–C alloys // Acta Mater. 2003. V. 51. P. 1789–1799.
  10. Morito S., Adachi Y., Ohba T. Morphology and crystallography of sub-blocks in ultra-low carbon lath martensite steel // Mater. Trans. 2009. V. 50. P. 1919–1923.
  11. Гундырев В.М., Зельдович В.И., Счастливцев В.М. Кристаллографический анализ и механизм мартенситного превращения в сплавах железа // ФММ. 2020. Т. 121. С. 1142−1161.
  12. Дудко В.А., Федосеева А.Э., Беляков А.Н., Кайбышев Р.О. Влияние содержания углерода на фазовый состав и механические свойства стали (02/10)Х9В2МФБР // ФММ. 2015. Т. 116. С. 1222−1232.
  13. Fedoseeva A., Nikitin I., Dudova N., Kaibyshev R. On effect of rhenium on mechanical properties of a high-Cr creep resistant steel // Mater. Lett. 2019. V. 269. P. 81−84.
  14. Li Y., Langdon T.G. A simple procedure for estimating threshold stresses in the creep of metal matrix composites // Scr. Mater. 1997. V. 36. P. 1457–1460.
  15. Mohamed F.A., Park K.-T., Lavernia E.J. Creep behavior of discontinuous SiC−Al composites // Mater. Sci. Eng. A. 1992. V. 150. P. 21−35.
  16. Lifshitz M., Slyozov V. The kinetics of precipitation from supersaturated solid solutions // J. Phys. Chem. Solids. 1961. V. 19. P. 35−50.
  17. Wagner R., Kampmann R. Homogeneous Second Phase Precipitation. John Wiley & Sons Inc., New York. 1991. P. 213–303.
  18. Humphreys F.J., Hatherly M. Recrystallization and related annealing phenomena, second edition. Pergamon Press, Oxford, England. 2004. P. 285–320.
  19. Федосеева А.Э., Никитин И.С., Кайбышев Р.О. Влияние температуры закалки на сопротивление ползучести 9% Cr−1% W−1% Mo−VNb мартенситной стали // ФММ. 2022. Т. 123. С. 101−108.

补充文件

附件文件
动作
1. JATS XML
2.

下载 (1MB)
3.

下载 (2KB)
4.

下载 (2KB)
5.

下载 (182KB)
6.

下载 (2KB)
7.

下载 (2MB)
8.

下载 (147KB)

版权所有 © А.Э. Федосеева, 2023

##common.cookie##