Influence of cold deformation on the structure, texture, elastic and microdurometric properties of biocompatible beta-titanium alloys based on the Ti–Nb–Zr system

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The influence of cold rolling with degrees of 85, 90% on the structural and textural state, microdurometric and elastic properties of hardened biocompatible -titanium alloys (at.%) Ti-26%Nb-3%Zr, Ti -26%Nb-5%Zr, Ti-26%Nb-6%Zr, Ti-26%Nb-3%Zr-1%Sn, Ti-26%Nb-3%Zr-1%Sn-0.7Ta . It is shown that an increase in the degree of deformation during cold rolling contributes to the formation of a more pronounced two-component texture {001}, {112} an increase in microhardness and a decrease in the values ​​of the elastic modulus in the rolling plane . A good agreement between the calculated and experimental values ​​of the modulus of elasticity of alloys in the quenched and cold-rolled states has been established.The influence of alloying and anisotropic state of alloys (through the molybdenum equivalent and the Zener anisotropy factor, respectively) on the level of their microhardness, contact modulus of elasticity E, including the difference in E in different sections of a cold-rolled sheet, is considered. It has been established that the minimum average value of Е=51±2 GPa in the rolling plane is given by the Ti-26Nb-3Zr alloy rolled with ε=90%, and the minimum level of average values Е (52±2 GPa in the rolling plane and 62±1 GPa in cross section) is typical for the Ti-26Nb-3Zr-1Sn alloy after rolling with ε= 85%

作者简介

A. Korenev

Ural Federal University

Email: a.g.illarionov@urfu.ru
Ekaterinburg, 620002 Russia

A. Illarionov

Ural Federal University; Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences

编辑信件的主要联系方式.
Email: a.g.illarionov@urfu.ru
Ekaterinburg, 620002 Russia; Ekaterinburg, 620108 Russia

参考

  1. Chen Q., Thouas G.A. Metallic implant biomaterials // Mater. Sci. Eng. R. 2015. V. 87. P. 1–57.
  2. Weng W., Biesiekierski A., Li Y., Wen C. Effects of selected metallic and interstitial elements on the microstructure and mechanical properties of beta titanium alloys for orthopedic applications // Materialia. 2019. V. 6. P. 100323.
  3. Biesiekierski A., Wang J., Abdel-Hady M., Wen C. A new look at biomedical Ti-based shape memory alloys // Acta Biomater. 2012. V. 8. P. 1661–1669.
  4. Илларионов А.Г., Гриб С.В., Илларионова С.М., Попов А.А. Cвязь структуры, фазового состава, физико-механических свойств в закаленных сплавах системы Ti–Nb // ФММ. 2019. Т. 120. № 2. С. 161–168.
  5. Hao Y.L., Li S.J., Sun S.Y., Yang R. Effect of Zr and Sn on Young’s modulus and superelasticity of Ti–Nb-based alloys // Mater. Sci. Eng. A. 2006. V. 441. P. 112–118.
  6. Abdel-Hady M., Fuwa H., Hinoshita K., Kimura H., Shinzato Y., Morinaga M. Phase stability change with Zr content in β-type Ti–Nb alloys // Scripta Materialia. 2007. V. 57. P. 1000–1003.
  7. Illarionov A.G., Grib S.V., Yurovskikh A.S. Scientific approaches to the development of titanium-based alloys for medical implants // Solid State Phenomena. 2019. V. 299. P. 462–467.
  8. Wang X., Zhang L.G., Guo Z.Y., Jiang Y., Tao X.M., Liu L.B. Study of low-modulus biomedical β Ti–Nb–Zr alloys based on single-crystal elastic constants modeling // J. Mechan. Behavior of Biomed. Mater. 2016. V. 62. P. 310–318.
  9. Inamura T., Hosoda H., Wakashima K., Miyazaki S. Anisotropy and Temperature Dependence of Young’s Modulus in Textured TiNbAl Biomedical Shape Memory Alloy // Mater. Trans. 2005. V. 46. № 7. P. 1597–1603.
  10. Hao Y.L., Niinomy M., Kuroda D., Fukunaga K., Zhou Y.L., Yang R., Suzuki A. Aging Response of the Young’s Modulus and Mechanical Properties of Ti–29Nb–13Ta–4.6Zr for Biomedical Applications // Metal. Mater. Trans. A. 2003. V. 34A. P. 1009–1012.
  11. He F., Yang S., Cao J. Effect of cold rolling and aging on the microstructure and mechanical properties of Ti–Nb–Zr alloy // JMEPEG. 2020. V. 29. P. 3411–3419.
  12. Inamura T., Shimizu R., Kim H.Y., Miyazaki S., Hosoda H. Optimum rolling ratio for obtaining {001} recrystallization texture in Ti–Nb–Al biomedical shape memory alloy // Mater. Sci. Eng. C. 2016. V. 61. P. 499–505.
  13. Cojocaru V.-D., Raducanu D., Gloriant T., Gordin D.M., Cinca I. Effects of cold-rolling deformation on texture evolution and mechanical properties of Ti–29Nb–9Ta–10Zr alloy // Materials Science and Engineering: A. 2013. V. 586. P. 1–10.
  14. Lan C., Wu Y., Guo L., Chen H., Chen F. Microstructure, texture evolution and mechanical properties of cold rolled Ti–32.5Nb–6.8Zr–2.7Sn biomedical beta titanium alloy // J. Mater. Sci. Techn. 2018. V. 34. P. 788–792.
  15. Коренев А.А., Илларионов А.Г. Расчетные и экспериментальные упругие свойства закаленных биосовместимых сплавов титана систем Ti–Nb, Ti–Nb–Zr, Ti–Nb–Zr–Sn, Ti–Nb–Zr–Sn–Ta // ФММ. 2022. Т. 123. № 11. С. 1–7.
  16. Marker C., Shang S.-L., Zhao J.-C., Liu Z.-K. Elastic knowledge base of bcc Ti alloys from first-principles calculations and CALPHAD-based modeling // Comp. Mater. Sci. 2017. V. 140. P. 121–139.
  17. Korenev A.A., Grib S.V., Illarionov A.G. Evolution of Structure, Physical and Mechanical Properties in Biocompatible Alloys Ti–39Nb–5Zr, Ti–39Nb–5Zr–2Sn, Ti–39Nb–5Zr–2Sn–2Ta under Deformation and Thermal Effects // AIP Conference Proceedings, 2020. V. 2313. P. 060007.
  18. Illarionov A.G., Narygina I.V., Grib S.V. Temperature range definition of phase transformation in experimental biocompatible Ti–Nb–Zr system alloys by various methods // Mater. Today: Proceedings. 2019. V. 19. Part 5. P. 2385–2388.
  19. Илларионов А.Г., Нежданов А.Г., Степанов С.И., Муллер-Камский Г., Попов А.А. Cтруктурно-фазовое состояние и механические свойства биосовместимых сплавов различных классов на основе титана // ФММ. 2020. Т. 121. № 4. С. 411–417.
  20. Jiang B., Wang Q., Wen D., Xu W., Chen G. Dong C., Sun L. and Liaw P.K. Effects of Nb and Zr on structural stabilities of Ti–Mo–Sn-based alloys with low modulus // Mater. Sci. Eng. A. 2017. V. 687. P. 1–7.
  21. Oliver W.C., Pharr G.M. Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology Pharr // J. Mater. Res. 2004. V. 19. № 1. P. 3–20.
  22. Ranganathan S.I., Ostoja-Starzewski M. Universal Elastic Anisotropy Index // Phys. Rev. Letters. 2008. V. 101. P. 055504.
  23. Муслов С.А., Шеляков А.В., Андреев В.А. Сплавы с эффектом памятью формы: свойства, получение и применение в технике и медицине. М.: МГМСУ им. А.И. Евдокимова, 2018. 254 с.
  24. Paszkiewicz T., Wolski S. Anisotropic properties of mechanical characteristics and auxeticity of cubic crystalline media // Phys. Stat. Sol. (b). 2007. V. 244. № 3. P. 966–977.
  25. Kim H.Y., Sasaki T., Okutsu K., Kim J.I., Inamura T., Hosoda H., Miyazaki S. Texture and shape memory behavior of Ti–22Nb–6Ta alloy // Acta Mater. 2006. V. 54. P. 423–433.
  26. Kovalik M., Wojciechowski K.W. Poisson’s ratio of orientationally disordered hard dumbbell crystal in three dimensions // J. of Non-Cryst/Solids. 2006. V. 352. P. 4269–4278.
  27. Kent D., Wang G., Dargusch M. Effects of phase stability and processing on the mechanical properties of Ti–Nb based β Ti alloys // Mechan. Behavior Biomed. Mater. 2013. V. 28. P. 15–25.
  28. Khrunyk Y.Y., Ehnert S., Grib S.V., Illarionov A.G., Stepanov S.I., Popov A.A., Ryzhkov M.A., Belikov S.V., Xu Z., Rupp F., Nüssler A.K. Synthesis and Characterization of a Novel Biocompatible Alloy, Ti–Nb–Zr–Ta–Sn // Int. J. Mol. Sci. 2021. V. 22. P. 10611.
  29. Levinger B.W. Lattice Parameter of Beta Titanium at Room Temperature // Trans. AIME J. Metals. 1953. № 2. P. 195.

补充文件

附件文件
动作
1. JATS XML
2.

下载 (193KB)
3.

下载 (981KB)
4.

下载 (262KB)
5.

下载 (274KB)
6.

下载 (243KB)
7.

下载 (187KB)
8.

下载 (64KB)

版权所有 © А.А. Коренев, А.Г. Илларионов, 2023

##common.cookie##